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Proposal Topics
Composition Framework for Tool Integration

 Tool Integration Design Patterns 

 „Star‟ – Common Integrated Model

 „Workflow‟ – Translators 

 Do not fit collaborative work well…

 Distributed collaborative work needs…

 Model Synchronization

 How to model dependencies among models?

 How to support asynchronous work?

 How to manage versions?

 How to propagate changes?



Proposal Topics
Multi-model Simulation Integration 

 C2 Wind-Tunnel: MSI for C2

 Integration Model: HLA federates

 Not suitable for real-time systems...

 Virtual Prototyping for CPS:

 Fine-grain time control

 Models for platforms 

 Processors, networks, middleware

 Integration of emulators

 Cycle-accurate timing

 Integration of physics models

 Multi-scale timing



An example:
A Cyber-Physical System Integration Problem

 The next Manned 

Spaceflight System:

 Orion: Crew Exploration 

Vehicle

 Ares: Booster



A Cyber-Physical System Integration

Problem

 Orion: GNC is in Simulink/Stateflow

 Stateflow:  A graphical modeling language 

based on Statecharts (Harel, 1988)

 Network ???

 Ares: GNC is in UML / Rhapsody

 UML/State Machines:  A graphical 

modeling language based on Statecharts 

(Harel, 1988) 

Orion

Ares

Some small problems…
1. Semantics(Stateflow) ≠ semantics(UML State Machines)
2. Message sequencing on the network is not defined

Challenge: 

How to analyze/verify 

such systems?



Problem #1: Semantic variants 

 Statecharts: > 20 variants (von der Beek, 1994)

 Semantics described formally in papers

 Stateflow variant (e.g. Rushby, 2004)

 Semantics described in documents

 Mathworks Stateflow documentation

 UML State Machines (OMG UML Standard)

 Comparing semantics

 Composable Semantics (Atlee , 2002)

 Structured Operational Semantics (Whalen, 2010)



Dynamic Semantics of DSMLs

 Pragmatic needs:

 Executable, understandable semantics so one can „simulate‟ 

model behavior  Execution-based

 Models are often transformed into artifacts (even if they are 

not executable) Translation-based

 Property checking on models  Evaluation-based

 The reality:

 Rapid prototyping of semantics is important

 Property checks can often be done by well-formedness rules,  

decision procedures can be „programmed‟ w.r.t the metamodel

 Need: reusable „semantic platform‟



Dynamic Semantics of DSMLs

 The „semantic platform‟ – the realization of the semantic 
domain:

 ASML

 MSR‟s implementation of Gurevich‟s Abstract State Machine

 Abstract state: the state of all the variables in the program

 Actions:  updates on the abstract state

 Like a OO programming language 

 Mid-level, tools for simulating and exploration (SpecExplorer)

 “Semantic units”

 High-level, reusable packages representing typical semantic concepts

 Example:  finite transition system (in ASML)

 Assumption:  variant DSMLs can be translated into a common S/U

 Java/JVM: low level, efficient, tools for model checking 

 JPF: Java Path Finder



Semantics via Model Execution

 Executor:  A generic „model interpreter‟ whose „program‟ 

is the model

 A formally specified executor

defines the semantics

 The „Model‟ is just static, constant data for the executor

 Formally specify executor:

 Use a (executable) specification language – ASML

 Use a (conventional) implementation language ?!

Model

Executor
State



Example

Model Executor

 Specifying the Executor using an executable spec (a.k.a.  
„program‟) 

 Everybody understands it

 Everybody can reason about it

 Allows quick prototyping

 Program verification, debugging,

testing tools can be applied

 Downside:

 Reasoning about (general) programs is more difficult than 
reasoning about models

 Inefficient in verification (too many states)

 Non-determinism is a problem 

Model

Executor
State



Example

Semantics for Statechart variants

 Many Statechart variants – our examples:

 UML State Machines

 Matlab Stateflow 

 Specification: 

 Natural language (< 100 pg, each)

 For some subsets: formal spec (in papers)

 Need:

 Executable specification for the semantics of both

 Goal: to apply verification tools (JPF) to the models



Preliminary result:

Semantics for Statechart variants

 Executable semantics

 Common Metamodel 

 Abstract syntax

 Executor (Java)

 Data model:  ~ 600 lines

 Common interpreter code: ~ 250 lines

 Stateflow: ~600 lines

 UML State Machine: ~ 400 lines 



Example: (Stateflow)

How is the executable semantics used?

Formal verificationModel-based toolchain

13

Simulink/Stateflow Modeling

IMPORT EXPORT

Model execution is monitored / checked by JPF

Capabilities:

•Non-deterministic execution

•Exception detection

•Numerical checks (overflows, loss of precision)

•Symbolic execution –test vector generation

Pluggable Semantics

Generic Framework

UMLStateflow Rhapsody

Pluggable semantics 

allow the same 

model to be verified 

with multiple 

interpretations



Problem #2: Concurrency

 Two systems connected through a network

 How do we model, analyze these? 

 Try Simulink: 

CTRL 1 CTRL 2

What it means:

at time t: ctrl1.in = ctrl2.out AND ctrl1.out = ctrl2.in

But: it is an algebraic loop – Simulink cannot simulate!



Problem #2: Concurrency

 Two systems, connected - fixed

CTRL 1 CTRL 2

z-1 : ‘1-step’ delay : output is delayed a non-zero time-step (delta). 

Has an initial value: at t=0 its output is defined. 

What it means:

at time t: ctrl1.out = delay.in AND delay.out = ctrl2.in AND ctrl2.out = ctrl1.in AND 
delay.out = delay.in @ t - delta

Now Simulink can simulate!

Z-1

delay



Concurrency

CTRL 1 CTRL 2

Simulation: 

- Simulink applies the  12’o clock rule + checks what has data

- t = 0: CTRL2 ; CTRL1

t = delta : CTRL2; CTRL1

t = 2*delta: CTRL2; CTRL1 ….

I.e: { CTRL2 ; delta ; CTRL1 }+ forever            --- Is this real??? 

Z-1

delay

Two problems:

1. CTRL1 and CTRL2 takes some time to execute, which may be different (e.g. 

WCET(CTRL1) and WCET(CTRL2))  trivial to fix

2. In real life: 

- CTRL1/2 are on different processors that communicate via a network

- CTRL1/2 run as independent threads that communicate asynchronously



Concurrency

Simulation implicitly does this:
{ CTRL2.recv(); CTRL2.run(); CTRL2.send();  CTRL1.recv();  CTRL1.run(); CTRL1.send(); }+

System does this – two independent, asynchronous processes:

P1: { CTRL1.recv(); CTRL1.run(); CTRL1.send(); }+
P2: { CTRL2.recv(); CTRL2.run(); CTRL2.send(); }+

If receive blocks, it will deadlock…

And the network? 

- Communication buffers, queues, delays, etc. 

- Protocols that transfer the messages

CTRL 1 CTRL 2Z-1

delay

CTRL 1 CTRL 2Network



Control flows ðdata flows

Some variants: (they need to be modeled)

1. First occurrence of one of the receive()-s does not wait, it returns a ‘default’ value 

Still lock-step execution 

2. Receive() does not block, controllers always work from the last input  receive() gets 

its data from the network buffer (de-coupled execution)

3. Receive delivers data, which can trigger an event that will trigger the controller  the 

presence of an event depends on the data value

CTRL 1

Network

recv

send

CTRL 2

recv

send



Modeling Concurrency + Communications

Background: Calculus of Communicating Systems (CCS) by 

Milner – a process algebra

Highlights:

Agents: active entities

Actions: synchronization points:

a : „receive on port a‟

a : „send on port a‟



CCS

 Example 1: An agent (process) CS (for Computer Scientist) 
with input: coffee and outputs: coin and pub. 

 Example 2: Coffee machine

 Behavior

CM = coin.coffee.CM

Receive a coin, send coffee..

CMcoin coffee



CCS: Composition

 CS | CM

 CS = coffee.pub.CS + coin.CS

 CM= coin.coffee.CM

CS | CM: infinite producer of pubs 

CMcoin coffeeCS

pub

coincoffee



CCS

 Models processes and their potential communications: 

synchronization points and their temporal sequencing

 Operators: 

 prefixing: in.P, out.Q

 alternative actions: in1.out1.P + in2.out2.P

 composition: P | Q: wire up compatible ports

 much else (left out)



CCS - Examples

 Single buffer
B = in(X).out(X).B

 Buffer with capacity = 2

 “Guaranteed delivery”

D = in(X).out(X).ackout(X).ackin(X).D

 Two-way buffer

B = in1(X).out1(X).B + in2(X).out2(X).B

B
in out

B1
in

B2
out

D
in out

ackin ackout

B2W
in1 out1

out2 in2



Our example:

Two controllers + network

A Ctrl_ process receives on its in, 

computes, sends on its out, then 

repeats

Net
in1 out1

out2 in2Ctrl1
in out

Ctrl2
in out

The network connection either receives on in1, 
then copies, then sends on out1, or receives 
on in2, then copies, then sends on out2; and 
then repeats

Of course this deadlocks immediately, but this is one thing we would like to catché



Modeling with CCS

 Both Simulink/Stateflow and UML State Machines are 

translated into sequential code blocks. 

 Need to model:

 How the sequential code blocks are embedded into processes 

(that have their own execution threads)

 How the network communication / message exchanges are 

sequenced

 Interaction point: rendezvous (out  in)



Ares

Network

Orion

Modeling the problem 

+

C1 

code
Copy Copy

C2

code

é.

Control flow

Rendezvous

Receive

Send

Sequential code

Choice point+



Executable semantics

 Each loop is an independent Java thread

 Rendezvous point: whoever arrives earlier, waits for the 

other

 Has two parties: sender and receiver

 Non-deterministic choice point: multiple rendezvous are 

possible (both sender and receiver)

 Whichever succeeds (= the other party arrives) first, will proceed

 The above scheme can be implemented using a simple Java 

library,  code can be generated from the model, and the 

result Java model of the system analyzed (using, e.g.  JPF)



Research challenges

 Core integration problem:

How to check the correctness of the integration in advance?

 Modeling language and tool for timed concurrent systems

 Models for typical communication / concurrency patterns

 Model generators:

 Transforming the models into concurrent Java code

 Transforming the models into other, analyzable formalisms 

 Analysis techniques 

 Java Path Finder

 SMV? Promela/SPIN? etc.

 Evaluation on examples


