Integration and Verification of Models
with Heterogeneous Semantics

Gabor Karsai
Vanderbilt University/ISIS

Proposal Topics
Composition Framework for Tool Integration

» Tool Integration Design Patterns

‘Star’ — Common Integrated Model

‘Workflow’ — Translators |

Do not fit collaborative work well...

» Distributed collaborative work needs...

—> Model Synchronization

How to model dependencies among models?

How to support asynchronous work?

How to manage versions!?

How to propagate changes?

T Synchronization
.1 — = Server

Proposal Topics
Multi-model Simulation Integration

» C2Wind-Tunnel: MSI for C2

Integration Model: HLA federates | = =
Not suitable for real-time systems.., = - [| |

=4 lF} oS
-t

il

i SL/SF

| ‘Ei‘ ‘1 “% !
» Virtual Prototyping for CPS: Wil

Fine-grain time control

Models for platforms (v K e] [1
Processors, networks, middleware H Y
. sics Emulation
Integration of emulators =N N
Cycle-accurate timing P || e] pdaptr ||
. . < : Communication/Coordination Bus: Data Exchange/T\'m% Control E >
Integration of physics models aaor o :
MUIti'Scale timing Hrrrnraas "t'céﬁ{ﬁft'aft'ib'n Cgﬁ;b[‘ft;a_.trc;ﬁ" nerrnnnnee® '

An example:
A Cyber-Physical System Integration Problem

LAS

» The next Manned
Spaceflight System:

Crew Exploration Vehicle (CEV)

(Crew Module/Service Module)

Spacecraft Adapter

Orion: Crew Exploration N——
Vehicle

Ares: Booster

Upper Stage

J-2X Upper Stage Engine

T D [T 0

Interstage

Forward Frustum

First Stage
(5-Segment RSRB)

CERISTACT: SR i

NI

A Cyber-Physical System Integration
Problem

» Orion: GNC is in Simulink/Stateflow

Stateflow: A graphical modeling language
based on Statecharts (Harel, 1988)

~ . Crew Exploration Vehicle (CEV)
iri (Crew Module/Service Module)
\|

| Spacecraft Adapter
Instrument Unit e

g Upper Stage
J-2X Upper Stage Engine

l . Interstage

» Network ?2??

Forward Frustum

: First Stage
3 (5-Segment RSRB)

» Ares: GNC is in UML / Rhapsody

UML/State Machines: A graphical
modeling language based on Statecharts

(Harel, 1988)
Some small problems... Challenge:
1. Semantics(Stateflow) # semantics(UML State Machines) +—| How to analyze/verify
2. Message sequencing on the network is not defined such systems?

Problem #1: Semantic variants

» Statecharts: > 20 variants (von der Beek, 1994)

» Semantics described formally in papers
Stateflow variant (e.g. Rushby, 2004)

» Semantics described in documents

Mathworks Stateflow documentation
UML State Machines (OMG UML Standard)

» Comparing semantics
Composable Semantics (Atlee , 2002)
Structured Operational Semantics (Whalen, 2010)

Dynamic Semantics of DSMLs

» Pragmatic needs:

Executable, understandable semantics so one can ‘simulate’
model behavior =2 Execution-based

Models are often transformed into artifacts (even if they are
not executable) = Translation-based

Property checking on models = Evaluation-based

» The reality:
Rapid prototyping of semantics is important

Property checks can often be done by well-formedness rules,
decision procedures can be ‘programmed’ w.r.t the metamodel

Need: reusable ‘semantic platform’

Dynamic Semantics of DSMLs

» The ‘semantic platform’ — the realization of the semantic
domain:

ASML

MSR’s implementation of Gurevich’s Abstract State Machine
Abstract state: the state of all the variables in the program
Actions: updates on the abstract state

Like a OO programming language

Mid-level, tools for simulating and exploration (SpecExplorer)
“Semantic units”

High-level, reusable packages representing typical semantic concepts

Example: finite transition system (in ASML)

Assumption: variant DSMLs can be translated into a common S/U

Java/JVM: low level, efficient, tools for model checking
JPF: Java Path Finder

Semantics via Model Execution

» Executor: A generic ‘model interpreter’ whose ‘program’

is the model
» A formally specified executor

-
defines the semantics Executor |oweg

» The ‘Model’ is just static, constant data for the executor

» Formally specify executor:
Use a (executable) specification language — ASML

Use a (conventional) implementation language ?!

Example
Model Executor

» Specifying the Executor using an executable spec (a.k.a.
‘program’)
Everybody understands it
Everybody can reason about it
Allows quick prototyping —
Program verification, debugging, Executor @
testing tools can be applied

» Downside:

Reasoning about (general) programs is more difficult than
reasoning about models

Inefficient in verification (too many states)
Non-determinism is a problem

Example
Semantics for Statechart variants

» Many Statechart variants — our examples:
UML State Machines
Matlab Stateflow

» Specification:
Natural language (< 100 pg, each)

For some subsets: formal spec (in papers)

» Need:

Executable specification for the semantics of both

Goal: to apply verification tools (JPF) to the models

Preliminary result:
Semantics for Statechart variants

Stateflow
<<Folder>>

» Executable semantics I

Common Metamodel N "

Name : field i 0.* | TransConnector
' "

EnterAction : field 8. Tngger.: fiaid | 1 e <<FCO>>
A Transwon | Guard : field | - 0
St ract S nta X DuringAction field ConditionAction : field oo
ExitAction : field ’

Decomposition :enum Action : field
Order : field Order : field
TypeBaseRef 64 0"

<<ReferenceProxy>> StateDE Junction TransStart ConnectorRef
Memberindex : field _I—o <<Model>> <<Atom>> <<hom>> <<Reference>>
K
I
History
<<Atom>>
Data Event
<<Model>> <<Model>>
Description : field Description :field
Name : field Name : field
Scope : enum Scope: enum
DataType : field Trigger: enum
Port : field Port : field
Units : field
xecutor (Java
Min : field
Max : field
. ArraySize : field
Data model: ~ 600 lines

Common interpreter code: ~ 250 lines
Stateflow: ~600 lines
UML State Machine: ~ 400 lines

Example: (Stateflow)
How is the executable semantics used?

Model-based toolchain Formal verification

State machine
-Model-
inJava—

ECErEesaaam——— 000 K

S|muI|nk/Stateﬂow

Model execution is monitored / checked by JPF

Capalbilities:

*Non-deterministic execution o R
Exception detection el ““‘f JE= jj" Il ”ﬁ)
Numerical checks (overflows, loss of precision) e~

Vi
Search Strategy ;.- Core JPF

*Symbolic execution — test vector generation

mh
henk H
ysl mf search
observation

Problem #2: Concurrency

» Two systems connected through a network
How do we model, analyze these!?

» Try Simulink:

CTRL | CTRL 2

What it means:
at time t: ctrl1.in = ctrl2.out AND ctrl1.out = ctri2.in

But: it is an algebraic loop — Simulink cannot simulate!

Problem #2: Concurrency

» Two systems, connected - fixed

CTRL |

a2

delay

CTRL 2

z1:1-step’ delay : output is delayed a non-zero time-step (de/ta).

Has an initial value: at t=0 its output is defined.

What it means:

at time t: ctrl1.out = delay.in AND delay.out = ctrli2.in AND ctrl2.out = ctrl1.in AND

delay.out = delay.in @ t - delta

Now Simulink can simulate!

Concurrency

CTRL | % CTRL 2

delay

Simulation:
- Simulink applies the 12’0 clock rule + checks what has data
-t=0: CTRL2 ; CTRL1
t = delta: CTRL2; CTRL1
t = 2*delta: CTRLZ2; CTRL1
l.e: { CTRLZ2 ; delta ; CTRL1 }+ forever --- Is this real?7??

Two problems:

1. CTRL1 and CTRLZ2 takes some time to execute, which may be different (e.g.
WCET(CTRL1) and WCET(CTRLZ2)) -> trivial to fix

2. In real life:

- CTRL1/2 are on different processors that communicate via a network

- CTRL1/2 run as independent threads that communicate asynchronously

Concurrency

delay

CTRL 2

Lo [

i

Simulation implicitly does this:

{ CTRLZ.recv(); CTRLZ2.run(); CTRLZ.send(); > CTRL1.recv(); CTRL1.run(); CTRL1.send(), }+

System does this — two independent, asynchronous processes:
P1:{ CTRL1.recv(); CTRL1.run(); CTRL1.send(); }+
P2: { CTRLZ.recv(); CTRLZ2.run(); CTRLZ2.send(); }+

If receive blocks, it will deadlock...

And the network?
- Communication buffers, queues, delays, etc
- Protocols that transfer the messages

CTRL |

CTRL 2

Control flows 0 data flows

= e

CTRL 1 CTRL 2

send

Network <€

Some variants: (they need to be modeled)

1. First occurrence of one of the receive()-s does not wait, it returns a ‘default’ value -
Still lock-step execution

2. Receive() does not block, controllers always work from the last input = receive() gets
its data from the network buffer (de-coupled execution)

3. Receive delivers data, which can trigger an eventthat will trigger the controller - the
presence of an event depends on the data value

VANDER! IVERSITY

INTEGRATED SYSTEMS

Modeling Concurrency + Communications

Background: Calculus of Communicating Systems (CCS) by
Milner — a process algebra

Highlights:
Agents: active entities
Actions: synchronization points:
a :‘receive on port a’

‘a:‘send on port a’

CCS

» Example |:An agent (process) CS (for Computer Scientist)
with input: coffee and outputs: coin and pub.

» Example 2: Coffee machine

coin { CM }coffee

» Behavior
CM = coin.coffee.CM
Receive a coin, send coffee..

CCS: Composition
» CS | CM

pub
coffee { CS a coin { M kffee

» CS = coffee.pub.CS + coin.CS
» CM= coin.coffee.CM
CS | CM:infinite producer of pubs ©

CCS

» Models processes and their potential communications:
synchronization points and their temporal sequencing

» Operators:
prefixing: in.P, out.Q
alternative actions:inl.outl.P + in2.out2.P
composition: P | Q: wire up compatible ports

much else (left out)

CCS - Examples

» Single buffer
B = in(X).out(X).B

» Buffer with capacity = 2

» “Guaranteed delivery”
D = in(X).out(X).ackout(X).ackin(X).D

» Two-way buffer
B = inl(X).outl (X).B + in2(X).out2(X).B

t
in out
B2
in out
ackin ackout

inl outl

Our example:
Two controllers + network

in out inl outl in out
Ctril ‘out2 Net in2 Ctri2]

A Ctrl_ process receives on its in, The network connection either receives on inl,
then copies, then sends on outl, or receives
on in2, then copies, then sends on out2;and
then repeats

computes, sends on its out, then
repeats

Of course this deadlocks I mmedi at el

Y,

L

Modeling with CCS

» Both Simulink/Stateflow and UML State Machines are
translated into sequential code blocks.

» Need to model:

How the sequential code blocks are embedded into processes
(that have their own execution threads)

How the network communication / message exchanges are
sequenced

» Interaction point: rendezvous (out =2 in)

Modeling t

he problem

(

p
Orion
Cl
code
y
N\
/
\ J

D

Copy Copy

Ares

—\

Netwe

C2
code

e

OEUTLL |

Control flow
Rendezvous
Receive

Send
Sequential code

Choice point

Executable semantics

» Each loop is an independent Java thread

» Rendezvous point: whoever arrives earlier, waits for the
other

Has two parties: sender and receiver
» Non-deterministic choice point: multiple rendezvous are
possible (both sender and receiver)

Whichever succeeds (= the other party arrives) first, will proceed

» The above scheme can be implemented using a simple Java
library, code can be generated from the model, and the
result Java model of the system analyzed (using, e.g. |PF)

Research challenges

» Core integration problem:

How to check the correctness of the integration in advance?

» Modeling language and tool for timed concurrent systems
» Models for typical communication / concurrency patterns
» Model generators:

Transforming the models into concurrent Java code

Transforming the models into other, analyzable formalisms

» Analysis techniques
Java Path Finder
SMV? Promela/SPIN? etc.

» Evaluation on examples

