
Integration and Verification of Models

with Heterogeneous Semantics

Gabor Karsai

Vanderbilt University/ISIS

Proposal Topics
Composition Framework for Tool Integration

 Tool Integration Design Patterns

 „Star‟ – Common Integrated Model

 „Workflow‟ – Translators

 Do not fit collaborative work well…

 Distributed collaborative work needs…

 Model Synchronization

 How to model dependencies among models?

 How to support asynchronous work?

 How to manage versions?

 How to propagate changes?

Proposal Topics
Multi-model Simulation Integration

 C2 Wind-Tunnel: MSI for C2

 Integration Model: HLA federates

 Not suitable for real-time systems...

 Virtual Prototyping for CPS:

 Fine-grain time control

 Models for platforms

 Processors, networks, middleware

 Integration of emulators

 Cycle-accurate timing

 Integration of physics models

 Multi-scale timing

An example:
A Cyber-Physical System Integration Problem

 The next Manned

Spaceflight System:

 Orion: Crew Exploration

Vehicle

 Ares: Booster

A Cyber-Physical System Integration

Problem

 Orion: GNC is in Simulink/Stateflow

 Stateflow: A graphical modeling language

based on Statecharts (Harel, 1988)

 Network ???

 Ares: GNC is in UML / Rhapsody

 UML/State Machines: A graphical

modeling language based on Statecharts

(Harel, 1988)

Orion

Ares

Some small problems…
1. Semantics(Stateflow) ≠ semantics(UML State Machines)
2. Message sequencing on the network is not defined

Challenge:

How to analyze/verify

such systems?

Problem #1: Semantic variants

 Statecharts: > 20 variants (von der Beek, 1994)

 Semantics described formally in papers

 Stateflow variant (e.g. Rushby, 2004)

 Semantics described in documents

 Mathworks Stateflow documentation

 UML State Machines (OMG UML Standard)

 Comparing semantics

 Composable Semantics (Atlee , 2002)

 Structured Operational Semantics (Whalen, 2010)

Dynamic Semantics of DSMLs

 Pragmatic needs:

 Executable, understandable semantics so one can „simulate‟

model behavior Execution-based

 Models are often transformed into artifacts (even if they are

not executable) Translation-based

 Property checking on models Evaluation-based

 The reality:

 Rapid prototyping of semantics is important

 Property checks can often be done by well-formedness rules,

decision procedures can be „programmed‟ w.r.t the metamodel

 Need: reusable „semantic platform‟

Dynamic Semantics of DSMLs

 The „semantic platform‟ – the realization of the semantic
domain:

 ASML

 MSR‟s implementation of Gurevich‟s Abstract State Machine

 Abstract state: the state of all the variables in the program

 Actions: updates on the abstract state

 Like a OO programming language

 Mid-level, tools for simulating and exploration (SpecExplorer)

 “Semantic units”

 High-level, reusable packages representing typical semantic concepts

 Example: finite transition system (in ASML)

 Assumption: variant DSMLs can be translated into a common S/U

 Java/JVM: low level, efficient, tools for model checking

 JPF: Java Path Finder

Semantics via Model Execution

 Executor: A generic „model interpreter‟ whose „program‟

is the model

 A formally specified executor

defines the semantics

 The „Model‟ is just static, constant data for the executor

 Formally specify executor:

 Use a (executable) specification language – ASML

 Use a (conventional) implementation language ?!

Model

Executor
State

Example

Model Executor

 Specifying the Executor using an executable spec (a.k.a.
„program‟)

 Everybody understands it

 Everybody can reason about it

 Allows quick prototyping

 Program verification, debugging,

testing tools can be applied

 Downside:

 Reasoning about (general) programs is more difficult than
reasoning about models

 Inefficient in verification (too many states)

 Non-determinism is a problem

Model

Executor
State

Example

Semantics for Statechart variants

 Many Statechart variants – our examples:

 UML State Machines

 Matlab Stateflow

 Specification:

 Natural language (< 100 pg, each)

 For some subsets: formal spec (in papers)

 Need:

 Executable specification for the semantics of both

 Goal: to apply verification tools (JPF) to the models

Preliminary result:

Semantics for Statechart variants

 Executable semantics

 Common Metamodel

 Abstract syntax

 Executor (Java)

 Data model: ~ 600 lines

 Common interpreter code: ~ 250 lines

 Stateflow: ~600 lines

 UML State Machine: ~ 400 lines

Example: (Stateflow)

How is the executable semantics used?

Formal verificationModel-based toolchain

13

Simulink/Stateflow Modeling

IMPORT EXPORT

Model execution is monitored / checked by JPF

Capabilities:

•Non-deterministic execution

•Exception detection

•Numerical checks (overflows, loss of precision)

•Symbolic execution –test vector generation

Pluggable Semantics

Generic Framework

UMLStateflow Rhapsody

Pluggable semantics

allow the same

model to be verified

with multiple

interpretations

Problem #2: Concurrency

 Two systems connected through a network

 How do we model, analyze these?

 Try Simulink:

CTRL 1 CTRL 2

What it means:

at time t: ctrl1.in = ctrl2.out AND ctrl1.out = ctrl2.in

But: it is an algebraic loop – Simulink cannot simulate!

Problem #2: Concurrency

 Two systems, connected - fixed

CTRL 1 CTRL 2

z-1 : ‘1-step’ delay : output is delayed a non-zero time-step (delta).

Has an initial value: at t=0 its output is defined.

What it means:

at time t: ctrl1.out = delay.in AND delay.out = ctrl2.in AND ctrl2.out = ctrl1.in AND
delay.out = delay.in @ t - delta

Now Simulink can simulate!

Z-1

delay

Concurrency

CTRL 1 CTRL 2

Simulation:

- Simulink applies the 12’o clock rule + checks what has data

- t = 0: CTRL2 ; CTRL1

t = delta : CTRL2; CTRL1

t = 2*delta: CTRL2; CTRL1 ….

I.e: { CTRL2 ; delta ; CTRL1 }+ forever --- Is this real???

Z-1

delay

Two problems:

1. CTRL1 and CTRL2 takes some time to execute, which may be different (e.g.

WCET(CTRL1) and WCET(CTRL2)) trivial to fix

2. In real life:

- CTRL1/2 are on different processors that communicate via a network

- CTRL1/2 run as independent threads that communicate asynchronously

Concurrency

Simulation implicitly does this:
{ CTRL2.recv(); CTRL2.run(); CTRL2.send(); CTRL1.recv(); CTRL1.run(); CTRL1.send(); }+

System does this – two independent, asynchronous processes:

P1: { CTRL1.recv(); CTRL1.run(); CTRL1.send(); }+
P2: { CTRL2.recv(); CTRL2.run(); CTRL2.send(); }+

If receive blocks, it will deadlock…

And the network?

- Communication buffers, queues, delays, etc.

- Protocols that transfer the messages

CTRL 1 CTRL 2Z-1

delay

CTRL 1 CTRL 2Network

Control flows ðdata flows

Some variants: (they need to be modeled)

1. First occurrence of one of the receive()-s does not wait, it returns a ‘default’ value

Still lock-step execution

2. Receive() does not block, controllers always work from the last input receive() gets

its data from the network buffer (de-coupled execution)

3. Receive delivers data, which can trigger an event that will trigger the controller the

presence of an event depends on the data value

CTRL 1

Network

recv

send

CTRL 2

recv

send

Modeling Concurrency + Communications

Background: Calculus of Communicating Systems (CCS) by

Milner – a process algebra

Highlights:

Agents: active entities

Actions: synchronization points:

a : „receive on port a‟

a : „send on port a‟

CCS

 Example 1: An agent (process) CS (for Computer Scientist)
with input: coffee and outputs: coin and pub.

 Example 2: Coffee machine

 Behavior

CM = coin.coffee.CM

Receive a coin, send coffee..

CMcoin coffee

CCS: Composition

 CS | CM

 CS = coffee.pub.CS + coin.CS

 CM= coin.coffee.CM

CS | CM: infinite producer of pubs

CMcoin coffeeCS

pub

coincoffee

CCS

 Models processes and their potential communications:

synchronization points and their temporal sequencing

 Operators:

 prefixing: in.P, out.Q

 alternative actions: in1.out1.P + in2.out2.P

 composition: P | Q: wire up compatible ports

 much else (left out)

CCS - Examples

 Single buffer
B = in(X).out(X).B

 Buffer with capacity = 2

 “Guaranteed delivery”

D = in(X).out(X).ackout(X).ackin(X).D

 Two-way buffer

B = in1(X).out1(X).B + in2(X).out2(X).B

B
in out

B1
in

B2
out

D
in out

ackin ackout

B2W
in1 out1

out2 in2

Our example:

Two controllers + network

A Ctrl_ process receives on its in,

computes, sends on its out, then

repeats

Net
in1 out1

out2 in2Ctrl1
in out

Ctrl2
in out

The network connection either receives on in1,
then copies, then sends on out1, or receives
on in2, then copies, then sends on out2; and
then repeats

Of course this deadlocks immediately, but this is one thing we would like to catché

Modeling with CCS

 Both Simulink/Stateflow and UML State Machines are

translated into sequential code blocks.

 Need to model:

 How the sequential code blocks are embedded into processes

(that have their own execution threads)

 How the network communication / message exchanges are

sequenced

 Interaction point: rendezvous (out in)

Ares

Network

Orion

Modeling the problem

+

C1

code
Copy Copy

C2

code

é.

Control flow

Rendezvous

Receive

Send

Sequential code

Choice point+

Executable semantics

 Each loop is an independent Java thread

 Rendezvous point: whoever arrives earlier, waits for the

other

 Has two parties: sender and receiver

 Non-deterministic choice point: multiple rendezvous are

possible (both sender and receiver)

 Whichever succeeds (= the other party arrives) first, will proceed

 The above scheme can be implemented using a simple Java

library, code can be generated from the model, and the

result Java model of the system analyzed (using, e.g. JPF)

Research challenges

 Core integration problem:

How to check the correctness of the integration in advance?

 Modeling language and tool for timed concurrent systems

 Models for typical communication / concurrency patterns

 Model generators:

 Transforming the models into concurrent Java code

 Transforming the models into other, analyzable formalisms

 Analysis techniques

 Java Path Finder

 SMV? Promela/SPIN? etc.

 Evaluation on examples

