CPS: Breakthrough: Secure Telerobotics
Lead PI:
Howard Chizeck
Co-PI:
Abstract
In telerobotic applications, human operators interact with robots through a computer network. This project is developing tools to prevent security threats in telerobotics, by monitoring and detecting malicious activities and correcting for them. To develop tools to prevent and mitigate security threats against telerobotic systems, this project adapts cybersecurity methods and extends them to cyber-physical systems. Knowledge about physical constraints and interactions between the cyber and physical components of the system are leveraged for security. A monitoring system is developed which collects operator commands and robot feedback information to perform real-time verification of the operator. Timely and reliable detection of any discrepancy between real and spoofed operator movements enables quick detection of adversarial activities. The results are evaluated on the UW-developed RAVEN surgical robot. This project brings together research in robotics, computer and network security, control theory and machine learning, in order to gain better understanding of complex teleoperated robotic systems and to engineer telerobotic systems that provide strict safety, security and privacy guarantees. The results are relevant and applicable to a wide range of applications, including telerobotic surgery, search and rescue missions, military operations, underwater infrastructure and repair, cleanup and repair in hazardous environments, mining, as well as manipulation/inspections of objects in low earth orbit. The project algorithms, software and hardware are being made available to the non-profit cyber-physical research community. Graduate and undergraduate students are being trained in cyber-physical systems security topics, and K-12, community college students and under-represented minority students are being engaged.
Howard Chizeck

Howard Jay Chizeck received his B.S and M.S. degrees from Case Western Reserve University, and the Sc.D. degree in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology in 1982. He has been a faculty member and Department Chair at two major research universities - in a small department at a private university and in a large department at a public university. From 1981 until 1998 he was at Case Western Reserve University in Cleveland, serving as Chair of the Department of Systems, Control and Industrial Engineering from 1995 - 1998. He was the Chair of the Electrical Engineering Department at the University of Washington in Seattle from August 1998- September 2003.Currently, he is a Professor of Electrical Engineering and Adjunct Professor of Bioengineering at the University of Washington. Professor Chizeck is a research thrust leader for the NSF Engineering Research Center for Sensorimotor Neural Engineering and. also co-director of the UW BioRobotics Laboratory.

Professor Chizeck was elected a Fellow of the IEEE in 1999 "for contributions to the use of control system theory in biomedical engineering" and he was elected to the American Institute for Medical and Biological Engineering (AIMBE) College of Fellows in 2011 for "contributions to the use of control system theory in functional electrical stimulation assisted walking." From 2008-2012 he was a member of the Science Technology Advisory Panel of The Johns Hopkins Applied Physics Laboratory. Professor Chizeck currently serves on the Visiting Committee of the Case School of Engineering (Case Western Reserve University). He has been involved with several start-up companies. He is a founder and member of the Board of Directors of Controlsoft Inc (Ohio) and also is a founder and Chair of the Board of Directors of BluHaptics, Inc., which was established in 2013 to commercialize haptic rendering, haptic navigation and other UW telerobotic technologies.

Performance Period: 10/01/2013 - 09/30/2016
Institution: University of Washington
Sponsor: National Science Foundation
Award Number: 1329751