Estimation of game-theoretical systems with applications to urban transportation

Jérôme Thai ${ }^{1} \quad$ Alexandre Bayen
${ }^{1}$ Department of Electrical Engineering \& Computer Sciences University of California at Berkeley

May 28, 2015

Limited sensing infrastructure

Limited sensing infrastructure

- Middleton and Parker. Initial Evaluation of Selected Detectors to Replace Inductive Loops on Freeways, FHWA/TX-00/1439-7. Texas Transportation Institute, College Station, TX. April 2000.

Sparsity of the data

Quasi-static traffic assignment problem

Quasi-static traffic assignment problem

Quasi-static traffic assignment problem

Problem statement

We pose the inverse traffic assignment problem with missing data

Problem statement

We pose the inverse traffic assignment problem with missing data

- Traffic volumes resulting from rational behavior of agents on the road network are easily but sparsely observable.

Problem statement

We pose the inverse traffic assignment problem with missing data

- Traffic volumes resulting from rational behavior of agents on the road network are easily but sparsely observable.
- Delay functions are not directly observable.

Problem statement

We pose the inverse traffic assignment problem with missing data

- Traffic volumes resulting from rational behavior of agents on the road network are easily but sparsely observable.
- Delay functions are not directly observable.
- How can we impute the delay functions from partial observations of equilibria?

Previous works assume full observations

- Inverse convex optimization: Keshavarz et al. (2011)
- Inverse variational inequality: Bertsimas et al. (2014)

Previous works assume full observations

- Inverse convex optimization: Keshavarz et al. (2011)
- Inverse variational inequality: Bertsimas et al. (2014)

Previous works:

Our work:

Here we develop more complex tools combining ideas from:

- Bilevel programming
- Computational mathematics
- Pareto optimization

Outline and contributions

Outline

Inverse problem with missing data

Formulation as a Pareto optimization problem

Theoretical results and implementation

Optimization process and Variational inequality

Notations and assumptions:

- $\mathcal{K}:=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\}$ encodes the flow conservation.
- Arc delays are increasing, separable and encoded in map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Variational Inequality (VI) formulation

The flow vector $\mathbf{x}^{\star} \in \mathcal{K}$ is an eq. iff $F\left(\mathbf{x}^{\star}\right)^{T}\left(\mathbf{u}-\mathbf{x}^{\star}\right) \geq 0, \forall \mathbf{u} \in \mathcal{K}$.

Optimization process and Variational inequality

Notations and assumptions:

- $\mathcal{K}:=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\}$ encodes the flow conservation.
- Arc delays are increasing, separable and encoded in map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Variational Inequality (VI) formulation

The flow vector $\mathbf{x}^{\star} \in \mathcal{K}$ is an eq. iff $F\left(\mathbf{x}^{\star}\right)^{T}\left(\mathbf{u}-\mathbf{x}^{\star}\right) \geq 0, \forall \mathbf{u} \in \mathcal{K}$.

Beckmann: for the delay map $F, \exists f$ convex such that $F=\nabla f$

Theorem 1 (Beckmann et al. 1956)

The eq. is solution of a convex optimization program $\operatorname{OP}(\mathcal{K}, f)$: $\min f(\mathbf{x})$ s.t. $\mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0$.

Remarks:

- the potential f encodes the interaction between players.
- the VI is a first-order optimality condition.

Review of Inverse problem

Review of Inverse problem

Review of Inverse problem

Equilibrium model

(K, F(.))
Strategy set K
$K \subset \mathbb{R}^{n}$ closed convex
Payoffs function F $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Set of equilibria $\mathcal{S} \subset \mathbb{R}^{n}$ strategy vector $x \in \mathcal{S}$

Parametric model

Assumes a parametric model $(K, F(\cdot \mid \theta)), \theta \in \Theta$

Structural parameters $\theta \in \mathbb{R}^{d}$
Θ contains enough prior information about the model
observes $z=H x \in \mathbb{R}^{p}$ with $x \in \mathcal{S}$ and H the observer $\operatorname{of} F(K, F(\cdot \mid \theta))$,

$$
\begin{array}{ll}
\min _{x, \theta} & \|H x-z\| \\
\text { s.t. } & x \in \mathcal{S}(\theta) \\
& \theta \in \Theta
\end{array}
$$

Find the best $\theta \in \Theta$ to minimize the measurement residual $\|H x-z\|$
such that x is an equilibrium

guess on the inputs of the models

Estimation of the highway network near Los Angeles

Figure: Highway network near Los Angeles

Estimation of the highway network near Los Angeles

Figure: Highway network near Los Angeles

- True delay function: $s_{a}^{\text {true }}\left(v_{a}\right)=d_{a}\left(1-\frac{3.5}{3}+\frac{3.5}{3-v_{a} / m_{a}}\right)$
- Parametric delay: $s_{a}\left(v_{a} \mid \boldsymbol{\theta}\right)=d_{a}\left(1+\sum_{i=1}^{6} \theta_{i}\left(v_{a} / m_{a}\right)^{i}\right)$
where $d_{a}=$ free flow delay, $m_{a}=$ number of lanes, $v_{a}=$ aggregate flow.

Estimation of the highway network near Los Angeles

Figure : Delay function imputation.

Figure : Toll pricing.

Outline

Inverse problem with missing data

Formulation as a Pareto optimization problem

Theoretical results and implementation

Primal-dual system and KKT conditions

Assumption: $\mathcal{K}=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\}$

Primal-dual system and KKT conditions

Assumption: $\mathcal{K}=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\}$

Theorem 3: primal-dual system (Facchinei 2003 Aghassi 2005)

\mathbf{x} is solution to $\mathrm{VI}(\mathcal{K}, F)$ if and only if there exists \mathbf{y} such that

$$
\begin{aligned}
& F(\mathbf{x})^{T} \mathbf{x}=\mathbf{b}^{T} \mathbf{y} \\
& \mathbf{A}=\mathbf{b}, \mathbf{x} \succeq 0 \\
& \mathbf{A}^{T} \mathbf{y} \preceq F(\mathbf{x})
\end{aligned}
$$

Primal-dual system and KKT conditions

Assumption: $\mathcal{K}=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\}$

Theorem 3: primal-dual system (Facchinei 2003 Aghassi 2005)

\mathbf{x} is solution to $\mathrm{VI}(\mathcal{K}, F)$ if and only if there exists \mathbf{y} such that

$$
\begin{aligned}
& F(\mathbf{x})^{T} \mathbf{x}=\mathbf{b}^{T} \mathbf{y} \\
& \mathbf{A}=\mathbf{b}, \mathbf{x} \succeq 0 \\
& \mathbf{A}^{T} \mathbf{y} \preceq F(\mathbf{x})
\end{aligned}
$$

Theorem 4: KKT conditions (Harker 1989)

\mathbf{x} is solution to $\mathrm{VI}(\mathcal{K}, F)$ if and only if there exists $(\mathbf{y}, \boldsymbol{\pi})$ such that

$$
\begin{aligned}
& F(\mathbf{x})=\mathbf{A}^{T} \mathbf{y}+\boldsymbol{\pi} \\
& \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0 \\
& \boldsymbol{\pi} \succeq 0, \mathbf{x}^{T} \boldsymbol{\pi}=0
\end{aligned}
$$

Note: If $F=\nabla f$, we can substitute $\operatorname{VI}(\mathcal{K}, F)$ with $\operatorname{OP}(\mathcal{K}, f)$.

Primal-dual system and KKT conditions

Assumption: $\mathcal{K}=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\}$

Theorem 3: primal-dual system (Facchinei 2003 Aghassi 2005)

\mathbf{x} is solution to $\mathrm{VI}(\mathcal{K}, F)$ if and only if there exists \mathbf{y} such that

$$
\begin{aligned}
& F(\mathbf{x})^{T} \mathbf{x}=\mathbf{b}^{T} \mathbf{y} \\
& \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0 \quad \text { primal feasibility } \\
& \mathbf{A}^{T} \mathbf{y} \preceq F(\mathbf{x}) \quad \text { dual feasibility }
\end{aligned}
$$

Theorem 4: KKT conditions (Harker 1989)

\mathbf{x} is solution to $\mathrm{VI}(\mathcal{K}, F)$ if and only if there exists $(\mathbf{y}, \boldsymbol{\pi})$ such that

$$
\begin{aligned}
& F(\mathbf{x})=\mathbf{A}^{T} \mathbf{y}+\boldsymbol{\pi} \\
& \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0 \quad \text { primal feasibility } \\
& \boldsymbol{\pi} \succeq 0, \mathbf{x}^{T} \boldsymbol{\pi}=0 \quad \text { dual feasibility }
\end{aligned}
$$

Note: If $F=\nabla f$, we can substitute $\operatorname{VI}(\mathcal{K}, F)$ with $\operatorname{OP}(\mathcal{K}, f)$.

Primal-dual system and KKT conditions

Assumption: $\mathcal{K}=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\}$

Theorem 3: primal-dual system (Facchinei 2003 Aghassi 2005)

\mathbf{x} is solution to $\mathrm{VI}(\mathcal{K}, F)$ if and only if there exists \mathbf{y} such that

$$
\begin{aligned}
& F(\mathbf{x})^{T} \mathbf{x}=\mathbf{b}^{T} \mathbf{y} \\
& \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \succeq 0 \quad \text { primal feasibility } \\
& \mathbf{A}^{T} \mathbf{y} \preceq F(\mathbf{x}) \quad \text { dual feasibility }
\end{aligned}
$$

Theorem 4: KKT conditions (Harker 1989)

\mathbf{x} is solution to $\mathrm{VI}(\mathcal{K}, F)$ if and only if there exists $(\mathbf{y}, \boldsymbol{\pi})$ such that

$$
\begin{aligned}
& F(\mathbf{x})=\mathbf{A}^{T} \mathbf{y}+\boldsymbol{\pi} \\
& \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0 \quad \text { primal feasibility } \\
& \boldsymbol{\pi} \succeq 0, \mathbf{x}^{T} \pi=0 \quad \text { dual feasibility }
\end{aligned}
$$

Note: If $F=\nabla f$, we can substitute $\operatorname{VI}(\mathcal{K}, F)$ with $\operatorname{OP}(\mathcal{K}, f)$.

Residual functions

Definition: residual functions

Nonnegative functions $r_{\text {PD }}$ and $r_{\text {KKT }}$ such that

$$
\begin{aligned}
& r_{\mathrm{PD}}(\mathbf{x}, \mathbf{y})=0 \quad \Longleftrightarrow(\mathbf{x}, \mathbf{y}) \text { solution to primal-dual system } \\
& r_{\mathrm{KKT}}(\mathbf{x}, \mathbf{y}, \boldsymbol{\pi})=0
\end{aligned} \Longleftrightarrow(\mathbf{x}, \mathbf{y}, \boldsymbol{\pi}) \text { solution to KKT system }
$$

Residual functions

Definition: residual functions

Nonnegative functions $r_{\text {PD }}$ and $r_{\text {KKT }}$ such that

$$
\begin{aligned}
& r_{\mathrm{PD}}(\mathbf{x}, \mathbf{y})=0 \quad \Longleftrightarrow(\mathbf{x}, \mathbf{y}) \text { solution to primal-dual system } \\
& r_{\mathrm{KKT}}(\mathbf{x}, \mathbf{y}, \boldsymbol{\pi})=0 \Longleftrightarrow(\mathbf{x}, \mathbf{y}, \boldsymbol{\pi}) \text { solution to KKT system }
\end{aligned}
$$

Classic residual associated to the primal-dual system

$$
r_{\mathrm{PD}}(\mathbf{x}, \mathbf{y})=F(\mathbf{x})^{T} \mathbf{x}-\mathbf{b}^{T} \mathbf{y}
$$

Residual functions

Definition: residual functions

Nonnegative functions $r_{\text {PD }}$ and $r_{\text {KKT }}$ such that

$$
\begin{aligned}
& r_{\mathrm{PD}}(\mathbf{x}, \mathbf{y})=0 \Longleftrightarrow(\mathbf{x}, \mathbf{y}) \text { solution to primal-dual system } \\
& r_{\mathrm{KKT}}(\mathbf{x}, \mathbf{y}, \boldsymbol{\pi})=0 \Longleftrightarrow(\mathbf{x}, \mathbf{y}, \boldsymbol{\pi}) \text { solution to KKT system }
\end{aligned}
$$

Classic residual associated to the primal-dual system

$$
r_{\mathrm{PD}}(\mathbf{x}, \mathbf{y})=F(\mathbf{x})^{T} \mathbf{x}-\mathbf{b}^{T} \mathbf{y}
$$

Classic residual associated to the KKT system, for $\alpha>0$

$$
\begin{gathered}
r_{\text {KKT }}^{p}(\mathbf{x}, \mathbf{y}, \boldsymbol{\pi})=\left\|\alpha r_{\text {stat }}+r_{\text {comp }}\right\|_{p} \\
\text { with } \quad \begin{array}{l}
r_{\text {stat }}(\mathbf{x}, \mathbf{y}, \boldsymbol{\pi})=F(\mathbf{x})^{T} \mathbf{x}-\mathbf{A}^{T} \mathbf{y}-\boldsymbol{\pi} \\
\\
r_{\text {comp }}(\mathbf{x}, \boldsymbol{\pi})=\mathbf{x} \circ \boldsymbol{\pi}=\left(x_{i} \pi_{i}\right)_{i=1}^{n}
\end{array} .
\end{gathered}
$$

Inverse problem with full data

Notation: $\mathrm{MP}(\mathcal{K}, F)$ both refers to $\mathrm{VI}(\mathcal{K}, F)$ and $\mathrm{OP}(\mathcal{K}, f)$
Given $\mathrm{x}^{\text {obs }}$ (nearly) optimal for $\operatorname{MP}(\mathcal{K}, F)$, the inverse problem is convex: ${ }^{1}$

$$
\begin{array}{ll}
\min _{\mathbf{y}, \boldsymbol{\theta}} & r\left(\mathbf{x}^{\mathrm{obs}}, \mathbf{y}, \boldsymbol{\theta}\right) \\
\text { s.t. } & \text { dual feasibility } \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

${ }^{1}$ Bertsimas et al. (2014) and Keshavarz, Wang, and Boyd (2011)

Formulation of the inverse problem with missing data Notation: $\operatorname{MP}(\mathcal{K}, F)$ both refers to $\mathrm{VI}(\mathcal{K}, F)$ and $\mathrm{OP}(\mathcal{K}, f)$

$$
\begin{array}{ll}
\min _{\mathbf{y}, \boldsymbol{\theta}} & r\left(\mathbf{x}^{\text {obs }}, \mathbf{y}, \boldsymbol{\theta}\right) \\
\text { s.t. } & \text { dual feasibility } \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Formulation of the inverse problem with missing data Notation: $\operatorname{MP}(\mathcal{K}, F)$ both refers to $\mathrm{VI}(\mathcal{K}, F)$ and $\mathrm{OP}(\mathcal{K}, f)$

$$
\begin{array}{ll}
\min _{\mathrm{x}, \mathbf{y}, \boldsymbol{\theta}} & r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}) \\
\text { s.t. } & \text { dual feasibility } \\
& \mathbf{x}=\mathrm{x}^{\circ \text { bs }} \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Formulation of the inverse problem with missing data Notation: $\operatorname{MP}(\mathcal{K}, F)$ both refers to $\mathrm{VI}(\mathcal{K}, F)$ and $\mathrm{OP}(\mathcal{K}, f)$

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}} & r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}) \\
\text { s.t. } & \text { dual feasibility } \\
& \mathbf{H x}=\mathbf{z}^{\text {obs }} \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Formulation of the inverse problem with missing data Notation: $\operatorname{MP}(\mathcal{K}, F)$ both refers to $\mathrm{VI}(\mathcal{K}, F)$ and $\mathrm{OP}(\mathcal{K}, f)$

$$
\begin{array}{ll}
\min _{\mathrm{x}, \mathbf{y}, \boldsymbol{\theta}} & r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}) \\
\text { s.t. } & \text { dual feasibility } \\
& \mathbf{H x}=\mathbf{z}^{\text {obs }} \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

- impose primal feasibility on the induced response
- formulation robust to outliers in the observations
- and $\mathbf{A x}=\mathbf{b}, \mathbf{H x}=\mathbf{z}$ might be infeasible because of noise

Formulation of the inverse problem with missing data

 Notation: $\operatorname{MP}(\mathcal{K}, F)$ both refers to $\mathrm{VI}(\mathcal{K}, F)$ and $\mathrm{OP}(\mathcal{K}, f)$$$
\begin{array}{ll}
\min _{\mathrm{x}, \mathbf{y}, \boldsymbol{\theta}} & r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}) \\
\text { s.t. } & \text { dual feasibility } \\
& \mathbf{H x}=\mathbf{z}^{\text {obs }} \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

- impose primal feasibility on the induced response
- formulation robust to outliers in the observations
- and $\mathbf{A x}=\mathbf{b}, \mathbf{H x}=\mathbf{z}$ might be infeasible because of noise

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}} & {\left[r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}), \phi\left(\mathbf{H} \mathbf{x}-\mathbf{z}^{\text {obs }}\right)\right]^{T}} \\
\text { s.t. } & \text { primal feasibility } \\
& \text { dual feasibility } \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Remark: replacing ϕ by general objective g gives a novel single-level formulation of bilevel programs:

$$
\min _{\mathbf{x}, \boldsymbol{\theta} \in \Theta} g(\mathbf{x}, \boldsymbol{\theta}) \quad \text { s.t. } \quad \mathbf{x} \text { is solution to } \operatorname{MP}(\mathcal{K}, F(\cdot, \boldsymbol{\theta}))
$$

Outline

Inverse problem with missing data

Formulation as a Pareto optimization problem

Theoretical results and implementation

Bounds on residuals

Theorem (Bertsimas et al. 2014)

Suppose primal feasibility and dual feasibility hold. Then
$r_{\mathrm{PD}} \leq \epsilon \quad \Longleftrightarrow \quad r_{\mathrm{VI}} \leq \epsilon \quad \Longrightarrow \quad r_{\mathrm{OP}} \leq \epsilon$

Theorem (Thai and Bayen 2014)

Suppose primal and dual feasibilities hold. Then $\forall p \geq 1, \alpha>0$ $r_{\mathrm{VI}} \leq \epsilon \Longrightarrow r_{\mathrm{KKT}}^{p} \leq \epsilon$.
Reciprocally, $r_{\text {KKT }}^{p} \leq \epsilon \Longrightarrow r_{\mathrm{VI}}=O\left(\epsilon\|\mathbf{x}\| n^{1-\frac{1}{p}}\right)$

- Tight bounds.
- r_{VI} and r_{KKT} define different metrics.

Bounds on residuals for strongly monotone functions

Definition: strong monotonicity

A map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is strongly monotone if $\exists m>0$ such that $(F(\mathbf{x})-F(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq m\|\mathbf{x}-\mathbf{y}\|_{2}^{2}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{K}$

- equivalent to strong convexity of f when $\nabla f=F$.
- unique solution \mathbf{x}^{\star} to $\mathrm{VI}(\mathcal{K}, F)$, resp. $\operatorname{OP}(\mathcal{K}, f)$.

Bounds on residuals for strongly monotone functions

Definition: strong monotonicity

A map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is strongly monotone if $\exists m>0$ such that $(F(\mathbf{x})-F(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq m\|\mathbf{x}-\mathbf{y}\|_{2}^{2}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{K}$

- equivalent to strong convexity of f when $\nabla f=F$.
- unique solution \mathbf{x}^{\star} to $\mathrm{VI}(\mathcal{K}, F)$, resp. $\mathrm{OP}(\mathcal{K}, f)$.

Theorem (Pang 1996)

Suppose F strongly monotone, primal and dual feasibilities, then $r_{\mathrm{PD}} \leq \epsilon \Longrightarrow\left\|\mathbf{x}-\mathbf{x}^{\star}\right\|_{2} \leq \sqrt{\epsilon / m}$

Bounds on residuals for strongly monotone functions

Definition: strong monotonicity

A map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is strongly monotone if $\exists m>0$ such that $(F(\mathbf{x})-F(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq m\|\mathbf{x}-\mathbf{y}\|_{2}^{2}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{K}$

- equivalent to strong convexity of f when $\nabla f=F$.
- unique solution \mathbf{x}^{\star} to $\mathrm{VI}(\mathcal{K}, F)$, resp. $\mathrm{OP}(\mathcal{K}, f)$.

Theorem (Pang 1996)

Suppose F strongly monotone, primal and dual feasibilities, then $r_{\text {PD }} \leq \epsilon \Longrightarrow\left\|\mathbf{x}-\mathbf{x}^{\star}\right\|_{2} \leq \sqrt{\epsilon / m}$

Theorem (Thai and Bayen 2014)

Suppose F strongly monotone, primal and dual feasibilities, then

$$
r_{\text {KKT }} \leq \epsilon \Longrightarrow\left\|\mathbf{x}-\mathbf{x}^{\star}\right\|_{2} \leq O\left(\sqrt{\epsilon\|\mathbf{x}\|_{\infty} n^{1-\frac{1}{\rho}} / m}\right)
$$

Finding the optimal Pareto point in one shot

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}} & {\left[r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}), \phi\left(\mathbf{H} \mathbf{x}-\mathbf{z}^{\mathrm{obs}}\right)\right]^{T}} \\
\text { s.t. } & \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \succeq 0 \\
& \mathbf{A}^{T} \mathbf{y} \preceq F(\mathbf{x} \mid \boldsymbol{\theta}) \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Finding the optimal Pareto point in one shot

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}} & w_{\mathrm{mp}} r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta})+w_{\text {obs }} \phi\left(\mathbf{H} \mathbf{x}-\mathbf{z}^{\text {obs }}\right) \\
\text { s.t. } & \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0 \\
& \mathbf{A}^{T} \mathbf{y} \preceq F(\mathbf{x} \mid \boldsymbol{\theta}) \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Finding the optimal Pareto point in one shot

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}} & w_{\mathrm{mp}} r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta})+w_{\mathrm{obs}} \phi\left(\mathbf{H x}-\mathbf{z}^{\mathrm{obs}}\right) \\
\text { s.t. } & \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0 \\
& \mathbf{A}^{T} \mathbf{y} \preceq F(\mathbf{x} \mid \boldsymbol{\theta}) \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Classic methodology to explore the Pareto curve
1 Normalize: $\tilde{r}:=r / r^{\max }$ and $\tilde{\phi}=\phi / \phi^{\max }$.
2 Solve with $w_{\mathrm{mp}}+w_{o b s}=1, w_{\mathrm{mp}} \in\left\{10^{-2}, 10^{-1}, 0.5,0.9,0.99\right\}$.
3 Check values of the residuals r and ϕ.

Finding the optimal Pareto point in one shot

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}} & w_{\mathrm{mp}} r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta})+w_{\mathrm{obs}} \phi\left(\mathbf{H x}-\mathbf{z}^{\mathrm{obs}}\right) \\
\text { s.t. } & \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0 \\
& \mathbf{A}^{T} \mathbf{y} \preceq F(\mathbf{x} \mid \boldsymbol{\theta}) \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Classic methodology to explore the Pareto curve
1 Normalize: $\tilde{r}:=r / r^{\max }$ and $\tilde{\phi}=\phi / \phi^{\max }$.
2 Solve with $w_{\mathrm{mp}}+w_{\text {obs }}=1, w_{\mathrm{mp}} \in\left\{10^{-2}, 10^{-1}, 0.5,0.9,0.99\right\}$.
3 Check values of the residuals r and ϕ.
With noiseless data, sufficient to solve one program with $w_{\text {obs }} \approx 1$

Theorem 9 (Thai and Bayen 2014)

If $\exists \mathbf{x}, \mathbf{y}, \boldsymbol{\theta}$ such that $\quad r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}) \leq \epsilon, \quad \mathbf{H} \mathbf{x}=\mathbf{z}^{\text {obs }}$
Then a solution $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}, \boldsymbol{\theta}^{\star}\right)$ to the weighted sum method is such that $r\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}, \boldsymbol{\theta}^{\star}\right) \leq \epsilon, \quad \phi\left(\mathbf{H}^{\star}-\mathbf{z}^{\text {obs }}\right) \rightarrow 0 \quad$ as $\quad w_{\text {obs }} \rightarrow 1$

Numerical experiments: weighted sum method

Parallelization over multiple observations

- Given pairs $\left(z_{j}^{\text {obs }}, \mathcal{K}_{j}\right)$ for $j=1, \cdots, N$
- $\mathcal{K}_{j}=\left\{\mathbf{x} \mid \mathbf{A} \mathbf{x}=\mathbf{b}_{j}, \mathbf{x} \succeq 0\right\}$ encodes a specific configuration
- \mathbf{x}_{j} is the resulting optimal response, but only observe $\mathbf{z}_{j}^{\text {obs }}=\mathbf{H} \mathbf{x}_{j}$
- Find $\boldsymbol{\theta}$ and $\left\{\mathbf{x}_{j}\right\}_{j}$ solution to $\mathrm{VI}\left(\mathcal{K}_{j}, F(\cdot \mid \boldsymbol{\theta})\right), \mathbf{H x}_{j}=\mathbf{z}_{j}^{\text {obs }} \forall j$

Parallelization over multiple observations

- Given pairs $\left(z_{j}^{\text {obs }}, \mathcal{K}_{j}\right)$ for $j=1, \cdots, N$
- $\mathcal{K}_{j}=\left\{\mathbf{x} \mid \mathbf{A} \mathbf{x}=\mathbf{b}_{j}, \mathbf{x} \succeq 0\right\}$ encodes a specific configuration
- \mathbf{x}_{j} is the resulting optimal response, but only observe $\mathbf{z}_{j}^{\text {obs }}=\mathbf{H} \mathbf{x}_{j}$
- Find $\boldsymbol{\theta}$ and $\left\{\mathbf{x}_{j}\right\}_{j}$ solution to $\mathrm{VI}\left(\mathcal{K}_{j}, F(\cdot \mid \boldsymbol{\theta})\right), \mathbf{H x}_{j}=\mathbf{z}_{j}^{\text {obs }} \forall j$

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}} & w_{\mathrm{mp}} r(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta})+w_{\mathrm{obs}} \phi\left(\mathbf{H} \mathbf{x}-\mathbf{z}^{\mathrm{obs}}\right) \\
\text { s.t. } & \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0 \\
& \mathbf{A}^{T} \mathbf{y} \preceq F(\mathbf{x} \mid \boldsymbol{\theta}) \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Parallelization over multiple observations

- Given pairs $\left(z_{j}^{\text {obs }}, \mathcal{K}_{j}\right)$ for $j=1, \cdots, N$
- $\mathcal{K}_{j}=\left\{\mathbf{x} \mid \mathbf{A} \mathbf{x}=\mathbf{b}_{j}, \mathbf{x} \succeq 0\right\}$ encodes a specific configuration
- x_{j} is the resulting optimal response, but only observe $\mathbf{z}_{j}^{\mathrm{obs}}=\mathrm{H} \mathrm{x}_{j}$
- Find $\boldsymbol{\theta}$ and $\left\{\mathbf{x}_{j}\right\}_{j}$ solution to $\mathrm{VI}\left(\mathcal{K}_{j}, F(\cdot \mid \boldsymbol{\theta})\right), \mathbf{H x}_{j}=\mathbf{z}_{j}^{\text {obs }} \forall j$

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}} & w_{\mathrm{mp}} \sum_{j} r\left(\mathbf{x}_{j}, \mathbf{y}_{j}, \boldsymbol{\theta}\right)+w_{\text {obs }} \sum_{j} \phi\left(\mathbf{H} \mathbf{x}_{j}-\mathbf{z}_{j}{ }^{\text {obs }}\right) \\
\text { s.t. } & \mathbf{A}_{j} \mathbf{x}_{j}=\mathbf{b}_{j}, \mathbf{x}_{j} \succeq 0, \quad j=1, \cdots, N \\
& \mathbf{A}_{j}^{T} \mathbf{y}_{j} \preceq F\left(\mathbf{x}_{j} \mid \boldsymbol{\theta}\right) \quad j=1, \cdots, N \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

Parallelization over multiple observations

- Given pairs $\left(z_{j}^{\text {obs }}, \mathcal{K}_{j}\right)$ for $j=1, \cdots, N$
- $\mathcal{K}_{j}=\left\{\mathbf{x} \mid \mathbf{A} \mathbf{x}=\mathbf{b}_{j}, \mathbf{x} \succeq 0\right\}$ encodes a specific configuration
- \mathbf{x}_{j} is the resulting optimal response, but only observe $\mathbf{z}_{j}^{\text {obs }}=\mathbf{H} \mathbf{x}_{j}$
- Find $\boldsymbol{\theta}$ and $\left\{\mathbf{x}_{j}\right\}_{j}$ solution to $\mathrm{VI}\left(\mathcal{K}_{j}, F(\cdot \mid \boldsymbol{\theta})\right), \mathbf{H} \mathbf{x}_{j}=\mathbf{z}_{j}^{\text {obs }} \forall j$

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}} & w_{\mathrm{mp}} \sum_{j} r\left(\mathbf{x}_{j}, \mathbf{y}_{j}, \boldsymbol{\theta}\right)+w_{\text {obs }} \sum_{j} \phi\left(\mathbf{H} \mathbf{x}_{j}-\mathbf{z}_{j}{ }^{\text {obs }}\right) \\
\text { s.t. } & \mathbf{A}_{j} \mathbf{x}_{j}=\mathbf{b}_{j}, \mathbf{x}_{j} \succeq 0, \quad j=1, \cdots, N \\
& \mathbf{A}_{j}^{T} \mathbf{y}_{j} \preceq F\left(\mathbf{x}_{j} \mid \boldsymbol{\theta}\right) \quad j=1, \cdots, N \\
& \boldsymbol{\theta} \in \Theta
\end{array}
$$

$\boldsymbol{\theta}$ is the common structural parameter. When fixed, parallelizable:

$$
\begin{array}{lll}
\min _{\mathbf{x}_{j}, \mathbf{y}_{j}} & w_{\mathrm{mp}} r\left(\mathbf{x}_{j}, \mathbf{y}_{j}, \boldsymbol{\theta}\right)+w_{\text {obs }} \phi\left(\mathbf{H} \mathbf{x}_{j}-\mathbf{z}_{j}^{\text {obs }}\right) & \\
\text { s.t. } & \mathbf{A}_{j} \mathbf{x}_{j}=\mathbf{b}_{j}, \mathbf{x}_{j} \succeq 0 & \\
& \mathbf{A}_{j}^{T} \mathbf{y}_{j} \preceq F\left(\mathbf{x}_{j} \mid \boldsymbol{\theta}\right) & \\
\end{array}
$$

Algorithm: update cyclically convex blocks $\left\{\mathbf{x}_{j}\right\}_{j=1}^{N},\left\{\mathbf{y}_{j}\right\}_{j=1}^{N}, \boldsymbol{\theta}$

Implementation of the forward and reverse solvers

Forward solver

Reverse solver

Publications

- J. Thai, R. Hariss, A. Bayen, Approximate Bilevel Programming via Pareto Optimization for Imputation and Control of Optimization and Equilibrium models, accepted, ECC2015
- J. Thai, R. Hariss, A. Bayen, A Multi-Convex approach to Latency Inference and Control in Traffic Equilibria from Sparse data, accepted, ACC2015

Future works

- Data driven re-estimation of the BPR function
- Estimation robust to attacks using the ℓ_{1} norm
- Model fitting to mimic more complex behaviors and for efficient re-routing
- Large-scale implementation of the inverse problem with GPS and cellular data

Appendix: traffic assignment problem

Morning commute example for the traffic assignment problem

- $\mathcal{A}=\operatorname{arc}$ set $=\{a, b, c, d, e\}$
- $\mathcal{N}=$ node set $=\{1,2,3,4\}$
- Commodity 1: $c_{1}=(1 \rightarrow 4,1000)$ "routing 1000 veh/h from 1 to $4 "$
- Commodity 2: $c_{2}=(2 \rightarrow 4,2000)$ "routing 2000 veh/h from 2 to $4 "$
- $\mathcal{C}=$ commodity set $=\left\{c_{1}, c_{2}\right\}$

Morning commute example for the traffic assignment problem

- $\mathcal{A}=\{a, b, c, d, e\},|\mathcal{A}|=5, \quad \mathcal{C}=\{1 \rightarrow 4,2 \rightarrow 4\},|\mathcal{C}|=2$
- commodity flow vectors: $\mathbf{x}_{1} \in \mathbb{R}^{|\mathcal{A}|}, \mathbf{x}_{2} \in \mathbb{R}^{|\mathcal{A}|}$
- overall flow vector: $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|}$
- aggregate flow vector: $\mathbf{v}=\mathbf{x}_{1}+\mathbf{x}_{2} \in \mathbb{R}^{|\mathcal{A}|}$

Morning commute example for the traffic assignment problem

- Feasible set:

$$
\mathcal{K}=\left\{\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \mid \mathbf{N} \mathbf{x}_{1}=\mathbf{b}_{1}, \mathbf{x}_{1} \succeq 0, \mathbf{N} \mathbf{x}_{2}=\mathbf{b}_{2}, \mathbf{x}_{2} \succeq 0\right\}
$$

- Delay $\operatorname{map} S: \mathbb{R}^{|\mathcal{A}|} \rightarrow \mathbb{R}^{|\mathcal{A}|}$ w.r.t. aggregate flow $\mathbf{v}=\mathbf{x}_{1}+\mathbf{x}_{2}$

$$
S(\mathbf{v})=\left(s_{a}\left(v_{a}\right), s_{b}\left(v_{b}\right), s_{c}\left(v_{c}\right), s_{d}\left(v_{d}\right), s_{e}\left(v_{e}\right)\right) \in \mathbb{R}^{|\mathcal{A}|}
$$

- $\mathbf{x}^{\star} \in \mathcal{K}$ is a Nash eq. if $\forall \mathbf{x} \in \mathcal{K}$, the associated aggregate flows $\mathbf{v}^{\star}, \mathbf{v}$ are such that

$$
v_{a}^{\star} s_{a}\left(v_{a}^{\star}\right)+\cdots+v_{e}^{\star} s_{e}\left(v_{e}^{\star}\right) \leq v_{a} s_{a}\left(v_{a}^{\star}\right)+\cdots+v_{e} s_{e}\left(v_{e}^{\star}\right)
$$

General traffic assignment problem

- commodity flow vectors: $\mathbf{x}_{k} \in \mathbb{R}^{|\mathcal{A}|}$ for all $k \in \mathcal{C}$

General traffic assignment problem

- commodity flow vectors: $\mathbf{x}_{k} \in \mathbb{R}^{|\mathcal{A}|}$ for all $k \in \mathcal{C}$
- overall flow vector: $\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|}$

General traffic assignment problem

- commodity flow vectors: $\mathbf{x}_{k} \in \mathbb{R}^{|\mathcal{A}|}$ for all $k \in \mathcal{C}$
- overall flow vector: $\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|}$
- aggregate flow vector: $\mathbf{v}=\sum_{k \in \mathcal{C}} \mathbf{x}_{k}=\mathbf{Z} \mathbf{x} \in \mathbb{R}^{|\mathcal{A}|}$

General traffic assignment problem

- commodity flow vectors: $\mathbf{x}_{k} \in \mathbb{R}^{|\mathcal{A}|}$ for all $k \in \mathcal{C}$
- overall flow vector: $\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|}$
- aggregate flow vector: $\mathbf{v}=\sum_{k \in \mathcal{C}} \mathbf{x}_{k}=\mathbf{Z} \mathbf{x} \in \mathbb{R}^{|\mathcal{A}|}$
- feasible set: $\mathcal{K}=\left\{\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \mid \mathbf{N} \mathbf{x}_{k}=\mathbf{b}_{k}, \mathbf{x}_{k} \succeq 0, \forall k \in \mathcal{C}\right\}$

$$
=\left\{\mathbf{x} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\right\}
$$

General traffic assignment problem

- commodity flow vectors: $\mathbf{x}_{k} \in \mathbb{R}^{|\mathcal{A}|}$ for all $k \in \mathcal{C}$
- overall flow vector: $\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|}$
- aggregate flow vector: $\mathbf{v}=\sum_{k \in \mathcal{C}} \mathbf{x}_{k}=\mathbf{Z} \mathbf{x} \in \mathbb{R}^{|\mathcal{A}|}$
- feasible set: $\mathcal{K}=\left\{\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \mid \mathbf{N} \mathbf{x}_{k}=\mathbf{b}_{k}, \mathbf{x}_{k} \succeq 0, \forall k \in \mathcal{C}\right\}$

$$
=\left\{\mathbf{x} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\right\}
$$

- Delay map $S: \mathbb{R}^{|\mathcal{A}|} \rightarrow \mathbb{R}^{|\mathcal{A}|}$ such that $S(\mathbf{v})=\left(s_{a}\left(v_{a}\right)\right)_{a \in \mathcal{A}}$

General traffic assignment problem

- commodity flow vectors: $\mathbf{x}_{k} \in \mathbb{R}^{|\mathcal{A}|}$ for all $k \in \mathcal{C}$
- overall flow vector: $\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|}$
- aggregate flow vector: $\mathbf{v}=\sum_{k \in \mathcal{C}} \mathbf{x}_{k}=\mathbf{Z x} \in \mathbb{R}^{|\mathcal{A}|}$
- feasible set: $\mathcal{K}=\left\{\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \mid \mathbf{N x}_{k}=\mathbf{b}_{k}, \mathbf{x}_{k} \succeq 0, \forall k \in \mathcal{C}\right\}$

$$
=\left\{\mathbf{x} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\right\}
$$

- Delay map $S: \mathbb{R}^{|\mathcal{A}|} \rightarrow \mathbb{R}^{|\mathcal{A}|}$ such that $S(\mathbf{v})=\left(s_{a}\left(v_{a}\right)\right)_{a \in \mathcal{A}}$
- Nash equilibrium: $\mathbf{x}^{\star} \in \mathcal{K}$ such that for all $\mathbf{x} \in \mathcal{K}$

$$
\begin{aligned}
\sum_{a \in \mathcal{A}} v_{a}^{\star} s_{a}\left(v_{a}^{\star}\right) \leq \sum_{a \in \mathcal{A}} v_{a} s_{a}\left(v_{a}^{\star}\right) & \Longleftrightarrow S\left(\mathbf{v}^{\star}\right)^{T} \mathbf{v}^{\star} \leq S\left(\mathbf{v}^{\star}\right)^{T} \mathbf{v} \\
& \Longleftrightarrow S\left(\mathbf{Z} \mathbf{x}^{\star}\right)^{T} \mathbf{Z} \mathbf{x}^{\star} \leq S\left(\mathbf{Z} \mathbf{x}^{\star}\right)^{T} \mathbf{Z} \mathbf{x} \\
& \Longleftrightarrow F\left(\mathbf{x}^{\star}\right)^{T} \mathbf{x}^{\star} \leq F\left(\mathbf{x}^{\star}\right)^{T} \mathbf{x}
\end{aligned}
$$

\Longrightarrow Nash eq. $=$ solution to a VI with $F(\mathbf{x})=\mathbf{Z}^{T} S(\mathbf{Z} \mathbf{x})$

General traffic assignment problem

- commodity flow vectors: $\mathbf{x}_{k} \in \mathbb{R}^{|\mathcal{A}|}$ for all $k \in \mathcal{C}$
- overall flow vector: $\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{C}|}$
- aggregate flow vector: $\mathbf{v}=\sum_{k \in \mathcal{C}} \mathbf{x}_{k}=\mathbf{Z x} \in \mathbb{R}^{|\mathcal{A}|}$
- feasible set: $\mathcal{K}=\left\{\mathbf{x}=\left(\mathbf{x}_{k}\right)_{k \in \mathcal{C}} \mid \mathbf{N x}_{k}=\mathbf{b}_{k}, \mathbf{x}_{k} \succeq 0, \forall k \in \mathcal{C}\right\}$

$$
=\left\{\mathbf{x} \in \mathbb{R}^{|\mathcal{A}| \times \mathcal{C} \mid} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\right\}
$$

- Delay map $S: \mathbb{R}^{|\mathcal{A}|} \rightarrow \mathbb{R}^{|\mathcal{A}|}$ such that $S(\mathbf{v})=\left(s_{a}\left(v_{a}\right)\right)_{a \in \mathcal{A}}$
- Nash equilibrium: $\mathbf{x}^{\star} \in \mathcal{K}$ such that for all $\mathbf{x} \in \mathcal{K}$

$$
\begin{aligned}
\sum_{a \in \mathcal{A}} v_{a}^{\star} S_{a}\left(v_{a}^{\star}\right) \leq \sum_{a \in \mathcal{A}} v_{a} s_{a}\left(v_{a}^{\star}\right) & \Longleftrightarrow S\left(\mathbf{v}^{\star}\right)^{T} \mathbf{v}^{\star} \leq S\left(\mathbf{v}^{\star}\right)^{T} \mathbf{v} \\
& \Longleftrightarrow S\left(\mathbf{Z} \mathbf{x}^{\star}\right)^{T} \mathbf{Z} \mathbf{x}^{\star} \leq S\left(\mathbf{Z} \mathbf{x}^{\star}\right)^{T} \mathbf{Z} \mathbf{x} \\
& \Longleftrightarrow F\left(\mathbf{x}^{\star}\right)^{T} \mathbf{x}^{\star} \leq F\left(\mathbf{x}^{\star}\right)^{T} \mathbf{x}
\end{aligned}
$$

\Longrightarrow Nash eq. $=$ solution to a VI with $F(\mathbf{x})=\mathbf{Z}^{\top} S(\mathbf{Z} \mathbf{x})$

Definition: variational inequality (VI)

$\operatorname{VI}(\mathcal{K}, F)$: find $\mathbf{x}^{\star} \in \mathcal{K}$ such that $F\left(\mathbf{x}^{\star}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{\star}\right) \geq 0, \forall \mathbf{x} \in \mathcal{K}$.

Optimization process and Variational inequality

Theorem 1 (Beckmann et al. 1956)

Suppose the arc delay functions are nonnegative, continuous, monotone, separable. Then the Nash equilibrium is solution of a convex optimization program, denoted $\mathrm{OP}(\mathcal{K}, f)$

$$
\min f(\mathbf{x}) \quad \text { s.t. } \quad \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0
$$

Remarks

- The potential f encodes the interaction between players.
- $\mathcal{K}:=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\}$ encodes the flow conservation.

Optimization process and Variational inequality

Theorem 1 (Beckmann et al. 1956)

Suppose the arc delay functions are nonnegative, continuous, monotone, separable. Then the Nash equilibrium is solution of a convex optimization program, denoted $\mathrm{OP}(\mathcal{K}, f)$

$$
\min f(\mathbf{x}) \quad \text { s.t. } \quad \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0
$$

Remarks

- The potential f encodes the interaction between players.
- $\mathcal{K}:=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \succeq 0\}$ encodes the flow conservation.

Theorem 2

With $f \in C^{1}, \mathbf{x}^{\star} \in \mathcal{K}$ is solution iff $\nabla f\left(\mathbf{x}^{\star}\right)^{T}\left(\mathbf{u}-\mathbf{x}^{\star}\right) \geq 0, \forall \mathbf{u} \in \mathcal{K}$.

Result from Beckmann: for the map $F(\mathbf{x})=\mathbf{Z}^{T} S(\mathbf{Z x}), \exists f$ convex such that $F=\nabla f$

