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Limited sensing infrastructure
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Limited sensing infrastructure
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Sensor Expected life Cost/lane/year :

Inductive loop detector 10 years $746

-| Video image processor 10 years $580

— Middleton and Parker. Initial Evaluation of Selected Detectors to Replace Inductive Loops on Freeways,
FHWA/TX-00/1439-7. Texas Transportation Institute, College Station, TX. April 2000.

Introduction and motivation



Sparsity of the data

20476 links (OSM)
1033 observed (PeMS)
~ 95% missing data
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Quasi-static traffic assignment problem
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Quasi-static traffic assignment problem
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Quasi-static traffic assignment problem
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Specify delay function on each arc:

.
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Wardrop equilibrium
Common solution concept for traffic models: each agent
HIl has access to the delay function on each arc and chooses

ﬁ the shortest path from origin to destination.

o
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Problem statement

We pose the inverse traffic assignment problem with missing data
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Problem statement

We pose the inverse traffic assignment problem with missing data

» Traffic volumes resulting from rational behavior of agents on the
road network are easily but sparsely observable.
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Problem statement

We pose the inverse traffic assignment problem with missing data

» Traffic volumes resulting from rational behavior of agents on the
road network are easily but sparsely observable.

» Delay functions are not directly observable.

» How can we impute the delay functions from partial
observations of equilibria?

Introduction and motivation



Previous works assume full observations

> Inverse convex optimization: Keshavarz et al. (2011)

» Inverse variational inequality: Bertsimas et al. (2014)
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Previous works assume full observations

> Inverse convex optimization: Keshavarz et al. (2011)

» Inverse variational inequality: Bertsimas et al. (2014)

Inverse Convex

Previous Works: problem with optimization

full data problem

Inverse

Our Work: problem with Bilevel

missing data program

Here we develop more complex tools combining ideas from:
» Bilevel programming
» Computational mathematics

» Pareto optimization

Introduction and motivation



Outline and contributions

Traffic

Forward problem: assignment
problem
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Outline and contributions
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Optimization process and Variational inequality

Notations and assumptions:
» K :={x|Ax =b, x = 0} encodes the flow conservation.

» Arc delays are increasing, separable and encoded in map F : R” — R”

Variational Inequality (VI) formulation

The flow vector x* € C is an eq. iff F(x*)T(u—x*) >0, Yu € K.

Inverse problem with missing data 9



Optimization process and Variational inequality

Notations and assumptions:
» K :={x|Ax =b, x = 0} encodes the flow conservation.

» Arc delays are increasing, separable and encoded in map F : R” — R”

Variational Inequality (VI) formulation

The flow vector x* € C is an eq. iff F(x*)T(u—x*) >0, Yu € K.

Beckmann: for the delay map F, 3f convex such that F = Vf

Theorem 1 (Beckmann et al. 1956)

The eq. is solution of a convex optimization program OP(KC, f):
min f(x) st. Ax=b, x> 0.

Remarks:

» the potential f encodes the interaction between players.
> the VIl is a first-order optimality condition.

Inverse problem with missing data 9



Review of Inverse problem

Equilibrium model

(K, F()

Strategy set K
K C R" closed convex

Payoffs function F
F:R" - R"

Set of equilibria S C R”
strategy vector x € §

equilibrium absEnyatiens parametric guess on the inputs
model with model N 4 of the models
missing data

Inverse problem with missing data 10



Review of Inverse problem

Parametric model

Assumes a parametric model
(K,F(:0)), 0 €©

Structural parameters § € RY

© contains enough prior
information about the model

observes z = Hx € RP
with x € S and H the observer

equilibrium observatians parametric guess on the inputs
model with model A 4 of the models
missing data

Inverse problem with missing data 11



Review of Inverse problem

- observations
equilibrium
model .
with
missing data

Inverse problem with missing data

parametric

Mathematical program
min ||Hx — z||
x,0

st. x€8(0)
ASKS

Find the best § € © to

minimize the measurement
residual ||Hx — z||

such that x is an equilibrium
of F(K, F(-]9)).

\ 4 of the models

guess on the inputs

12



Estimation of the highway network near Los Angeles

— delay/ fi-delay = 1
= 1 <delay/fi-delay <= 1.5
—— 1.5 <delay/ fi-delay <= 2
—— 2<delay/fi-delay <=3

— 3<delay/ff-delay
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Figure : Highway network near Los Angeles
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Estimation of the highway network near Los Angeles

— delay/ fi-delay = 1
= 1 <delay/fi-delay <= 1.5
—— 1.5 <delay/ fi-delay <= 2
~—— 2<delay/fl-delay <=3

== 3<delay/ff-delay

Figure : Highway network near Los Angeles

» True delay function: si™¢(v,) = d, (1 - 33—5 + %)

» Parametric delay: s,(v,|0) = d, (1 +3° 0;(va/ma)i)

where d, = free flow delay, m, = number of lanes, v, = aggregate flow.

Inverse problem with missing data 13



Estimation of the highway network near Los Angeles

(1) )
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relative error = 0%, lambda = 1e-02
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relative error = 4%, lambda = 1e+02
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Inverse problem with missing data Flgure - Toll pricing. 14
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Primal-dual system and KKT conditions

Assumption: K = {x|Ax =b, x = 0}

Formulation as a Pareto optimization problem
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Theorem 3: primal-dual system (Facchinei 2003 Aghassi 2005)

x is solution to VI(IC, F) if and only if there exists y such that

F(x)"x=bTy
Ax=b, x>0
ATy < F(x)
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Theorem 3: primal-dual system (Facchinei 2003 Aghassi 2005)
x is solution to VI(IC, F) if and only if there exists y such that
F(x)"x=bTy

Ax=b, x>0
ATy < F(x)

Theorem 4: KKT conditions (Harker 1989)
x is solution to VI(KC, F) if and only if there exists (y, ) such that
F(x)=ATy+m

Ax=b, x>0
7r>_-0,xT7r:0

.

.

Note: If F = V£, we can substitute VI(KC,F) with OP(/C, f).
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Primal-dual system and KKT conditions

Assumption: K = {x|Ax =b, x = 0}

Theorem 3: primal-dual system (Facchinei 2003 Aghassi 2005)
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Theorem 4: KKT conditions (Harker 1989)
x is solution to VI(KC, F) if and only if there exists (y, ) such that
F(x)=ATy+m

Ax =b, x = 0 primal feasibility
w>=0,x"7=0 dual feasibility

.

.

Note: If F = V£, we can substitute VI(KC,F) with OP(/C, f).

Formulation as a Pareto optimization problem



Residual functions

Definition: residual functions

Nonnegative functions rpp and rkkT such that
rep(x,y) =0 <= (x,y) solution to primal-dual system
rkkT(X,y, ) =0 <= (x,y, ) solution to KKT system

Formulation as a Pareto optimization problem 17
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Residual functions

Definition: residual functions

Nonnegative functions rpp and rkkT such that
rep(x,y) =0 <= (x,y) solution to primal-dual system
wkT(X,y, ™) =0 <= (x,y, ) solution to KKT system

Classic residual associated to the primal-dual system
ro(x,y) = F(x)"x—bTy
Classic residual associated to the KKT system, for a > 0
ekt (%, ¥, ) = [|atrstat + reompllp
with  reae(x,y,7) = F(x)"x — ATy — 7

reomp(X, ) = x 0 = (X;m;)7_4

Formulation as a Pareto optimization problem 17



Inverse problem with full data

Notation: MP(/C, F) both refers to VI(K, F) and OP(K, f)
Given x°® (nearly) optimal for MP(KC, F), the inverse problem is convex:

min  r(x°".y. 6)
y,0

st dual feasibility
60O

!Bertsimas et al. (2014) and Keshavarz, Wang, and Boyd (2011)

Formulation as a Pareto optimization problem

1
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Formulation of the inverse problem with missing data
Notation: MP(IC, F) both refers to VI(K, F) and OP(K, f)

min  r(x°%,y, 6)
y.0
s.t.  dual feasibility

0o

Formulation as a Pareto optimization problem
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Formulation of the inverse problem with missing data
Notation: MP(IC, F) both refers to VI(K, F) and OP(K, f)

min  r(x,y, )
X,y,0
s.t.  dual feasibility

x — x°bs

0co

Formulation as a Pareto optimization problem
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Formulation of the inverse problem with missing data
Notation: MP(IC, F) both refers to VI(K, F) and OP(K, f)

min  r(x,y, )

x,y,0
s.t.  dual feasibility
Hx = z°bs

0o
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Formulation of the inverse problem with missing data
Notation: MP(IC, F) both refers to VI(K, F) and OP(K, f)

min  r(x,y, )

x,y,0

s.t.  dual feasibility
Hx = z°bs
00O

» impose primal feasibility on the induced response
» formulation robust to outliers in the observations
» and Ax = b, Hx = z might be infeasible because of noise
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Formulation of the inverse problem with missing data
Notation: MP(IC, F) both refers to VI(K, F) and OP(K, f)

min  r(x,y, )

x,y,0

s.t.  dual feasibility
Hx = z°bs
00O

» impose primal feasibility on the induced response

» formulation robust to outliers in the observations

» and Ax = b, Hx = z might be infeasible because of noise
mir(; [r(x,y,80), o(Hx — z°%)]T

Y

s.t.  primal feasibility
dual feasibility
0coO

Remark: replacing ¢ by general objective g gives a novel single-level
formulation of bilevel programs:

rgirég(x, 0) s.t. xis solution to MP(KC, F(-,0))
x,0¢c

Formulation as a Pareto optimization problem

19
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Theoretical results and implementation
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Bounds on residuals

Theorem (Bertsimas et al. 2014)

Suppose primal feasibility and dual feasibility hold. Then
rrp <€ << ng<e — rop=<¢

Theorem (Thai and Bayen 2014)

Suppose primal and dual feasibilities hold. ThenVp>1, a >0
v <e = riyr <e

1
Reciprocally, i < e = ny = O(e||x||n* %)

» Tight bounds.

» ny; and rkkT define different metrics.

Theoretical results and implementation 21



Bounds on residuals for strongly monotone functions

Definition: strong monotonicity

A map F : R" — R” is strongly monotone if 3m > 0 such that
(FOx) = F(y) T (x—y) > mllx—y[3, Vx,yek

> equivalent to strong convexity of f when Vf = F.
» unique solution x* to VI(K, F), resp. OP(K, f).

Theoretical results and implementation 22



Bounds on residuals for strongly monotone functions

Definition: strong monotonicity

A map F : R" — R” is strongly monotone if 3m > 0 such that
(FOx) = F(y) T (x—y) > mllx—y[3, Vx,yek

> equivalent to strong convexity of f when Vf = F.
» unique solution x* to VI(K, F), resp. OP(K, f).

Theorem (Pang 1996)

Suppose F strongly monotone, primal and dual feasibilities, then

rpp <€ = ||x —x*|2 < \/e¢/m
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Bounds on residuals for strongly monotone functions

Definition: strong monotonicity

A map F : R" — R” is strongly monotone if 3m > 0 such that
(FO) = F)T(x—y) = mllx—y[3, Vx,yek

> equivalent to strong convexity of f when Vf = F.
» unique solution x* to VI(K, F), resp. OP(K, f).

Theorem (Pang 1996)

Suppose F strongly monotone, primal and dual feasibilities, then

rpp <€ = ||x —x*|2 < \/e¢/m

Theorem (Thai and Bayen 2014)

Suppose F strongly monotone, primal and dual feasibilities, then

1
IKkT <€ = [[x—x*|2 < O (\/e||x||oon1_5/m)

Th ical.results.and.i | i 2




Finding the optimal Pareto point in one shot

m”; [r(x, Y, 0)7 ¢(HX - ZObS)]T
x’y)

st. Ax=b, x>0
ATy < F(x|6)
6co

Theoretical results and implementation
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Finding the optimal Pareto point in one shot

MmN Wmp r(X, Y, 0) + Wobs p(Hx — z°bs)

x,y,0

st. Ax=b, x>0
ATy < F(x|)
6co
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Finding the optimal Pareto point in one shot

MmN Wmp r(X, Y, 0) + Wobs p(Hx — z°bs)

x,y,0

st. Ax=b, x>0
ATy < F(x|6)
60c0o

Classic methodology to explore the Pareto curve
1 Normalize: 7:=r/r™® and b= o/ Pm*.
2 Solve With Winp + Wops = 1, Wimp € {1072,1071,0.5,0.9,0.99}.

3 Check values of the residuals r and ¢.

Theoretical results and implementation
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Finding the optimal Pareto point in one shot

min Wmp (X, Y, 0) + Wops (Hx — z°%)

x,y,0

st. Ax=b,x>0
ATy < F(x|6)
00O

Classic methodology to explore the Pareto curve
1 Normalize: 7:=r/r™ and ¢ = ¢/p™.
2 Solve with Winp + Wops = 1, Wimp € {1072,107%,0.5,0.9,0.99}.

3 Check values of the residuals r and ¢.

With noiseless data, sufficient to solve one program with wyps ~ 1

Theorem 9 (Thai and Bayen 2014)

If 3x, y, @ such that r(x,y,0) <e, Hx=2z°
Then a solution (x*,y*, 8%) to the weighted sum method is such that
r(x*,y*,0%) <e, G(Hx* —z°%) =0 as Weps — 1

Theoretical results and implementation 23



Numerical experiments: weighted sum method

b

(b) relative error (%)

12 M true delay S™"
M true delay S™

— observed arcs

.001 .01 .99 .999

1 5 9
(d) weight on Wobs
o observation residual (log10)

(c) duality gap

1 .5 .9 .99 .999 8001 .01 1.5 9 .99 .999
weight on wobs

.001 .01 L.
weight on wobs

Theoretical results and implementation 24



Parallelization over multiple observations

v

v

v

v

Given pairs (zj‘-’bs, Kj) forj=1,--- N
Kj = {x| Ax = bj, x = 0} encodes a specific configuration

x; is the resulting optimal response, but only observe zj?bs = Hx;

Find 6 and {x;}; solution to VI(Kj, F(:9)), Hx; = 23> v/

Theoretical results and implementation
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Parallelization over multiple observations

> Given pairs (0%, Kj) for j=1,--- | N
» Kj = {x|Ax =bj, x = 0} encodes a specific configuration
> x; is the resulting optimal response, but only observe zj?bs = Hx;

> Find 6 and {x;}; solution to VI(K;, F(:9)), Hx; = 23>V

min - Wmp r(X, Y, 0) + Wops d(Hx — z°%%)

x,y,0

st. Ax=b,x>0
ATy < F(x|6)
6co
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Parallelization over multiple observations

» Given pairs ( obs k) forj=1,---,N
» Kj = {x|Ax =bj, x = 0} encodes a specific configuration
> x; is the resulting optimal response, but only observe zOIDS Hx;

» Find 6 and {x;}; solution to VI(K;, F(:|0)), Hx; = zJ‘-’bs Vj

;nylg mez (xjayja )+W0b5 Zj¢(HXJ_ZJ'ObS)
s.t. AJXJ:bprtO? J:L/N

AjTyj = F(Xj|9) j=1---,N

6co
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Parallelization over multiple observations

» Given pairs ( obs k) forj=1,---,N
» Kj = {x|Ax =bj, x = 0} encodes a specific configuration
> x; is the resulting optimal response, but only observe zOIDS Hx;

» Find 6 and {x;}; solution to VI(K;, F(:|0)), Hx; = zJ‘-’bs Vj

)I;nylg Wmp Z (XJ, Y ) + Wobs ZJ¢(HXJ - ZJObS)

s.t. AJ'XJ':I)J',XJ'EO7 j=1-- /N
ATy < F(xj|0) j=1,--- N
6co

0 is the common structural parameter. When fixed, parallelizable:

;nlyn Wmp r(Xj, Y 0) + Wobs ¢(HXJ - Zj')bs)
S J

s.t. A_,'Xj:bj, tho forj=1,--- N
Aly; = F(x]6)

Algorithm: update cyclically convex blocks {xj}jN:17 {yj}jN:l, 0

Theoretical results and implementation 25



Implementation of the forward and reverse solvers

Graph

delay functions

N demands
N observations

Conversion to A b, F
CVXOPT
Sparse matrices

—>| CVXOPT Eq. flow

Forward solver

Conversion to
CVXOPT
Sparse matrices

|
1
|
|
A, {bj}' {Zj} |
ﬁl a est
|
1
|
|
1

j,est

1 1
| Xy, Y, update |
| i
1 1
i | x,y update | i
| |
1 1
1 1
1 1
1 1

Reverse solver

Theoretical results and implementation
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Publications

» J. Thai, R. Hariss, A. Bayen, Approximate Bilevel Programming via
Pareto Optimization for Imputation and Control of Optimization and
Equilibrium models, accepted, ECC2015

» J. Thai, R. Hariss, A. Bayen, A Multi-Convex approach to Latency

Inference and Control in Traffic Equilibria from Sparse data,
accepted, ACC2015

Theoretical results and implementation 27



Future works

» Data driven re-estimation of the BPR function
» Estimation robust to attacks using the ¢ norm

» Model fitting to mimic more complex behaviors and for efficient
re-routing

» Large-scale implementation of the inverse problem with GPS and
cellular data

Theoretical results and implementation 28



Appendix: traffic assignment problem

Appendix: traffic assignment problem
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Morning commute example for the traffic assignment problem

v

A =arcset = {a,b,c,d, e}

N = node set = {1,2,3,4}

Commodity 1: ¢ = (1 — 4,1000) "routing 1000 veh/h from 1 to 4"
Commodity 2: ¢ = (2 — 4,2000) "routing 2000 veh/h from 2 to 4"
C = commodity set = {c1, &}

v

v

v

v

Appendix: traffic assignment problem 30



Morning commute example for the traffic assignment problem

Flow conservation for commodity 1

- X, - X, =-1000
X, - X, -%X, =0 B
B 5, +x-x,=0 = Narh
_ x,20
X. +X4=1000

nonnegative flows

Flow conservation for commodity 2
-X, - X%, =0
X, - X. - X, =-2000
aoe e Nx,=b,
0 X, + X, -X4=0 =
_ X,20
X, +X4=2000
nonnegative flows

» A={a,b,c,d,e}, |[A|=5 C={1—4,2—4} |C]|=2
» commodity flow vectors: x; € RMI x, € RIA
» overall flow vector: x = (x1, xp) € RIMIXIC|

» aggregate flow vector: v = x; + x, € R

Appendix: traffic assignment problem 31



Morning commute example for the traffic assignment problem

» Feasible set:
K = {x = (x1, x2) | Nx; = by, x; = 0, Nx = by, x2 = 0}
» Delay map S : R — RMI w.r.t. aggregate flow v = x; + x5
5(v) = (sa(va), s6(vb), sc(ve), sa(va), se(ve)) € RM

» x* € K is a Nash eq. if Vx € I, the associated aggregate flows v*, v
are such that

Vi sa(vy) - F vEse(ve) S vasa(Vy) 4+ ve se(V2)

Appendix: traffic assignment problem 32



General traffic assignment problem

» commodity flow vectors: x, € RM! for all k € C

Appendix: traffic assignment problem
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General traffic assignment problem

» commodity flow vectors: x, € RM! for all k € C

» overall flow vector: x = (xk)kec € RIAIXICI

Appendix: traffic assignment problem
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General traffic assignment problem

» commodity flow vectors: x, € RM! for all k € C
» overall flow vector: x = (xk)kec € RIAIXICI

> aggregate flow vector: v =3, - xx = Zx € RMI

Appendix: traffic assignment problem
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General traffic assignment problem
» commodity flow vectors: x, € RM! for all k € C
» overall flow vector: x = (x4)xec € RMIXICI
> aggregate flow vector: v =3, - xx = Zx € RMI

» feasible set: K = {x = (xx)kec | Nxx = bk, xx = 0, Vk € C}
= {x € RHAXICI| Ax = b, x = 0}

Appendix: traffic assignment problem

33



General traffic assignment problem

» commodity flow vectors: x, € RM! for all k € C
|A|x[C]

v

overall flow vector: x = (x)kec € R

v

aggregate flow vector: v =3, - xx = Zx € RMI

feasible set: IC = {x = (xx)kec | Nxx = bk, xxk = 0, Vk € C}
= {x € RMIXICI| Ax = b, x = 0}

Delay map S : RMI — RMI such that S(v) = (52(v4))aca

v

v
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General traffic assignment problem
» commodity flow vectors: x, € RM! for all k € C
» overall flow vector: x = (x4)xec € RMIXICI
> aggregate flow vector: v =3, - xx = Zx € RMI

» feasible set: K = {x = (xx)kec | Nxx = bk, xx = 0, Vk € C}
= {x € RHAXICI| Ax = b, x = 0}

» Delay map S : RMI — RMI such that S(v) = (55(va))aca
» Nash equilibrium: x* € K such that for all x € K

Sovisa(vE) < Yvasa(vy) <= S(v¥)Tv* < S(v¥)Tv

acA acA
= S(Zx*)TZx* < S(Zx*)"Zx
— F(x*)Tx* < F(x*)Tx

= Nash eq. = solution to a VI with F(x) = ZT S(Zx)
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General traffic assignment problem

» commodity flow vectors: x, € RM! for all k € C

» overall flow vector: x = (x4)xec € RMIXICI

v

aggregate flow vector: v =3, - xx = Zx € RIA

feasible set: IC = {x = (xx)kec | Nxx = bk, xxk = 0, Vk € C}
= {x e RA*ICl| Ax = b, x = 0}

Delay map S : RMI — RMI such that S(v) = (52(v4))aca
Nash equilibrium: x* € K such that for all x € K
Sovisa(vE) < Yvasa(vy) <= S(v¥)Tv* < S(v¥)Tv

acA acA
— S(Zx*)TZx* < S(Zx*)"Zx
— F(x*)Tx* < F(x*)Tx

v

v

v

= Nash eq. = solution to a VI with F(x) = ZT S(Zx)

Definition: variational inequality (VI)

VI(K, F): find x* € K such that F(x*)T(x —x*) >0, ¥x € K.

Appendix._traffic i problem.




Optimization process and Variational inequality

Theorem 1 (Beckmann et al. 1956)

Suppose the arc delay functions are nonnegative, continuous, mono-
tone, separable. Then the Nash equilibrium is solution of a convex
optimization program, denoted OP(K, f)

min f(x) st. Ax=b,x>0

\. J

Remarks
» The potential f encodes the interaction between players.

» K :={x|Ax =b, x = 0} encodes the flow conservation.
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Optimization process and Variational inequality

Theorem 1 (Beckmann et al. 1956)

Suppose the arc delay functions are nonnegative, continuous, mono-
tone, separable. Then the Nash equilibrium is solution of a convex
optimization program, denoted OP(K, f)

min f(x) st. Ax=b,x>0

. J

Remarks
» The potential f encodes the interaction between players.

» K :={x|Ax =b, x = 0} encodes the flow conservation.

With f € C1, x* € K is solution iff VFf(x*)"(u —x*) >0, Vu € K.

Result from Beckmann: for the map F(x) = Z"S(Zx), 3 f convex such
that F = Vf
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