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Problem statement

We pose the inverse traffic assignment problem with missing data

I Traffic volumes resulting from rational behavior of agents on the
road network are easily but sparsely observable.

I Delay functions are not directly observable.

I How can we impute the delay functions from partial
observations of equilibria?
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Previous works assume full observations

I Inverse convex optimization: Keshavarz et al. (2011)

I Inverse variational inequality: Bertsimas et al. (2014)

Here we develop more complex tools combining ideas from:

I Bilevel programming

I Computational mathematics

I Pareto optimization
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Optimization process and Variational inequality

Notations and assumptions:

I K := {x |Ax = b, x � 0} encodes the flow conservation.

I Arc delays are increasing, separable and encoded in map F : Rn → Rn

Variational Inequality (VI) formulation

The flow vector x? ∈ K is an eq. iff F (x?)T (u− x?) ≥ 0, ∀u ∈ K.

Beckmann: for the delay map F , ∃ f convex such that F = ∇f

Theorem 1 (Beckmann et al. 1956)

The eq. is solution of a convex optimization program OP(K, f ):
min f (x) s.t. Ax = b, x � 0.

Remarks:

I the potential f encodes the interaction between players.

I the VI is a first-order optimality condition.
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Estimation of the highway network near Los Angeles

Figure : Highway network near Los Angeles

I True delay function: strue
a (va) = da

(
1− 3.5

3 + 3.5
3−va/ma

)
I Parametric delay: sa(va|θ) = da

(
1 +

∑6
i=1 θi (va/ma)i

)
where da = free flow delay, ma = number of lanes, va = aggregate flow.
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Estimation of the highway network near Los Angeles

Figure : Delay function imputation.

Figure : Toll pricing.
Inverse problem with missing data 14
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Primal-dual system and KKT conditions

Assumption: K = {x |Ax = b, x � 0}

Theorem 3: primal-dual system (Facchinei 2003 Aghassi 2005)

x is solution to VI(K,F ) if and only if there exists y such that

F (x)Tx = bTy
Ax = b, x � 0 primal feasibility
ATy � F (x) dual feasibility

Theorem 4: KKT conditions (Harker 1989)

x is solution to VI(K,F ) if and only if there exists (y,π) such that

F (x) = ATy + π
Ax = b, x � 0 primal feasibility
π � 0, xTπ = 0 dual feasibility

Note: If F = ∇f , we can substitute VI(K,F) with OP(K, f ).

Formulation as a Pareto optimization problem 16
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Residual functions

Definition: residual functions

Nonnegative functions rPD and rKKT such that
rPD(x, y) = 0 ⇐⇒ (x, y) solution to primal-dual system
rKKT(x, y,π) = 0 ⇐⇒ (x, y,π) solution to KKT system

Classic residual associated to the primal-dual system

rPD(x, y) = F (x)Tx− bTy

Classic residual associated to the KKT system, for α > 0

rpKKT(x, y,π) = ‖αrstat + rcomp‖p

with rstat(x, y,π) = F (x)Tx− ATy − π
rcomp(x,π) = x ◦ π = (xiπi )

n
i=1

Formulation as a Pareto optimization problem 17
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Inverse problem with full data

Notation: MP(K,F ) both refers to VI(K,F ) and OP(K, f )

Given xobs (nearly) optimal for MP(K,F ), the inverse problem is convex:1

1Bertsimas et al. (2014) and Keshavarz, Wang, and Boyd (2011)

Formulation as a Pareto optimization problem 18



Formulation of the inverse problem with missing data
Notation: MP(K,F ) both refers to VI(K,F ) and OP(K, f )

I impose primal feasibility on the induced response

I formulation robust to outliers in the observations

I and Ax = b, Hx = z might be infeasible because of noise

min
x,y,θ

[r(x, y,θ), φ(Hx− zobs)]T

s.t. primal feasibility
dual feasibility
θ ∈ Θ

Remark: replacing φ by general objective g gives a novel single-level
formulation of bilevel programs:

min
x,θ∈Θ

g(x,θ) s.t. x is solution to MP(K,F (·,θ))

Formulation as a Pareto optimization problem 19
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Inverse problem with missing data

Formulation as a Pareto optimization problem

Theoretical results and implementation
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Bounds on residuals

Theorem (Bertsimas et al. 2014)

Suppose primal feasibility and dual feasibility hold. Then
rPD ≤ ε ⇐⇒ rVI ≤ ε =⇒ rOP ≤ ε

Theorem (Thai and Bayen 2014)

Suppose primal and dual feasibilities hold. Then ∀ p ≥ 1, α > 0
rVI ≤ ε =⇒ rpKKT ≤ ε.
Reciprocally, rpKKT ≤ ε =⇒ rVI = O(ε‖x‖n1− 1

p )

I Tight bounds.

I rVI and rKKT define different metrics.

Theoretical results and implementation 21



Bounds on residuals for strongly monotone functions
Definition: strong monotonicity

A map F : Rn → Rn is strongly monotone if ∃m > 0 such that
(F (x)− F (y))T (x− y) ≥ m‖x− y‖2

2, ∀ x, y ∈ K

I equivalent to strong convexity of f when ∇f = F .

I unique solution x? to VI(K,F ), resp. OP(K, f ).

Theorem (Pang 1996)

Suppose F strongly monotone, primal and dual feasibilities, then

rPD ≤ ε =⇒ ‖x− x?‖2 ≤
√
ε/m

Theorem (Thai and Bayen 2014)

Suppose F strongly monotone, primal and dual feasibilities, then

rKKT ≤ ε =⇒ ‖x− x?‖2 ≤ O

(√
ε‖x‖∞n1− 1

p /m

)

Theoretical results and implementation 22
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Finding the optimal Pareto point in one shot

Classic methodology to explore the Pareto curve

1 Normalize: r̃ := r/rmax and φ̃ = φ/φmax.

2 Solve with wmp + wobs = 1, wmp ∈ {10−2, 10−1, 0.5, 0.9, 0.99}.
3 Check values of the residuals r and φ.

With noiseless data, sufficient to solve one program with wobs ≈ 1

Theorem 9 (Thai and Bayen 2014)

If ∃ x, y, θ such that r(x, y,θ) ≤ ε, Hx = zobs

Then a solution (x?, y?,θ?) to the weighted sum method is such that
r(x?, y?,θ?) ≤ ε, φ(Hx? − zobs)→ 0 as wobs → 1

Theoretical results and implementation 23
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Numerical experiments: weighted sum method

Theoretical results and implementation 24



Parallelization over multiple observations

I Given pairs (zobs
j , Kj) for j = 1, · · · ,N

I Kj = {x |Ax = bj , x � 0} encodes a specific configuration

I xj is the resulting optimal response, but only observe zobs
j = Hxj

I Find θ and {xj}j solution to VI(Kj ,F (·|θ)), Hxj = zobs
j ∀ j

θ is the common structural parameter. When fixed, parallelizable:

min
xj ,yj

wmp r(xj , yj ,θ) + wobs φ(Hxj − zobs
j )

s.t. Ajxj = bj , xj � 0
AT

j yj � F (xj |θ)

for j = 1, · · · ,N

Algorithm: update cyclically convex blocks {xj}Nj=1, {yj}Nj=1, θ

Theoretical results and implementation 25
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Algorithm: update cyclically convex blocks {xj}Nj=1, {yj}Nj=1, θ
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Implementation of the forward and reverse solvers

Graph	  
delay	  func/ons	  

Conversion	  to	  
CVXOPT	  
Sparse	  matrices	  
	  

CVXOPT	  
A,	  b,	  F	  

Eq.	  flow	  

Graph	  

N	  demands	  
N	  observa/ons	  

Conversion	  to	  
CVXOPT	  
Sparse	  matrices	  
	  

A,	  {bj},	  {zj}	  

θ	  update	  

x1,	  y1	  update	  

xN,	  yN	  update	  

xj,	  yj	  update	  

…	  

…	  

θest	  
	  xj,est	  

Reverse	  solver	  

Forward	  solver	  
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accepted, ACC2015
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Future works

I Data driven re-estimation of the BPR function

I Estimation robust to attacks using the `1 norm

I Model fitting to mimic more complex behaviors and for efficient
re-routing

I Large-scale implementation of the inverse problem with GPS and
cellular data
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Morning commute example for the traffic assignment problem

I A = arc set = {a, b, c , d , e}
I N = node set = {1, 2, 3, 4}
I Commodity 1: c1 = (1→ 4, 1000) ”routing 1000 veh/h from 1 to 4”

I Commodity 2: c2 = (2→ 4, 2000) ”routing 2000 veh/h from 2 to 4”

I C = commodity set = {c1, c2}
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Morning commute example for the traffic assignment problem

I A = {a, b, c , d , e}, |A| = 5, C = {1→ 4, 2→ 4}, |C| = 2

I commodity flow vectors: x1 ∈ R|A|, x2 ∈ R|A|

I overall flow vector: x = (x1, x2) ∈ R|A|×|C|

I aggregate flow vector: v = x1 + x2 ∈ R|A|
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Morning commute example for the traffic assignment problem

I Feasible set:

K = {x = (x1, x2) |Nx1 = b1, x1 � 0, Nx2 = b2, x2 � 0}

I Delay map S : R|A| → R|A| w.r.t. aggregate flow v = x1 + x2

S(v) = ( sa(va), sb(vb), sc(vc), sd(vd), se(ve) ) ∈ R|A|

I x? ∈ K is a Nash eq. if ∀ x ∈ K, the associated aggregate flows v?, v
are such that

v?a sa(v?a ) + · · ·+ v?e se(v?e ) ≤ va sa(v?a ) + · · ·+ ve se(v?e )
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General traffic assignment problem

I commodity flow vectors: xk ∈ R|A| for all k ∈ C

I overall flow vector: x = (xk)k∈C ∈ R|A|×|C|

I aggregate flow vector: v =
∑

k∈C xk = Zx ∈ R|A|

I feasible set: K = {x = (xk)k∈C |Nxk = bk , xk � 0, ∀ k ∈ C}
= {x ∈ R|A|×|C| |Ax = b, x � 0}

I Delay map S : R|A| → R|A| such that S(v) = (sa(va))a∈A

I Nash equilibrium: x? ∈ K such that for all x ∈ K∑
a∈A

v?a sa(v?a ) ≤
∑
a∈A

va sa(v?a ) ⇐⇒ S(v?)Tv? ≤ S(v?)Tv

⇐⇒ S(Zx?)TZx? ≤ S(Zx?)TZx
⇐⇒ F (x?)Tx? ≤ F (x?)Tx

=⇒ Nash eq. = solution to a VI with F (x) = ZTS(Zx)

Definition: variational inequality (VI)

VI(K,F ): find x? ∈ K such that F (x?)T (x− x?) ≥ 0, ∀ x ∈ K.

Appendix: traffic assignment problem 33



General traffic assignment problem

I commodity flow vectors: xk ∈ R|A| for all k ∈ C
I overall flow vector: x = (xk)k∈C ∈ R|A|×|C|

I aggregate flow vector: v =
∑

k∈C xk = Zx ∈ R|A|

I feasible set: K = {x = (xk)k∈C |Nxk = bk , xk � 0, ∀ k ∈ C}
= {x ∈ R|A|×|C| |Ax = b, x � 0}

I Delay map S : R|A| → R|A| such that S(v) = (sa(va))a∈A

I Nash equilibrium: x? ∈ K such that for all x ∈ K∑
a∈A

v?a sa(v?a ) ≤
∑
a∈A

va sa(v?a ) ⇐⇒ S(v?)Tv? ≤ S(v?)Tv

⇐⇒ S(Zx?)TZx? ≤ S(Zx?)TZx
⇐⇒ F (x?)Tx? ≤ F (x?)Tx

=⇒ Nash eq. = solution to a VI with F (x) = ZTS(Zx)

Definition: variational inequality (VI)

VI(K,F ): find x? ∈ K such that F (x?)T (x− x?) ≥ 0, ∀ x ∈ K.

Appendix: traffic assignment problem 33



General traffic assignment problem

I commodity flow vectors: xk ∈ R|A| for all k ∈ C
I overall flow vector: x = (xk)k∈C ∈ R|A|×|C|

I aggregate flow vector: v =
∑

k∈C xk = Zx ∈ R|A|

I feasible set: K = {x = (xk)k∈C |Nxk = bk , xk � 0, ∀ k ∈ C}
= {x ∈ R|A|×|C| |Ax = b, x � 0}

I Delay map S : R|A| → R|A| such that S(v) = (sa(va))a∈A

I Nash equilibrium: x? ∈ K such that for all x ∈ K∑
a∈A

v?a sa(v?a ) ≤
∑
a∈A

va sa(v?a ) ⇐⇒ S(v?)Tv? ≤ S(v?)Tv

⇐⇒ S(Zx?)TZx? ≤ S(Zx?)TZx
⇐⇒ F (x?)Tx? ≤ F (x?)Tx

=⇒ Nash eq. = solution to a VI with F (x) = ZTS(Zx)

Definition: variational inequality (VI)

VI(K,F ): find x? ∈ K such that F (x?)T (x− x?) ≥ 0, ∀ x ∈ K.

Appendix: traffic assignment problem 33



General traffic assignment problem

I commodity flow vectors: xk ∈ R|A| for all k ∈ C
I overall flow vector: x = (xk)k∈C ∈ R|A|×|C|

I aggregate flow vector: v =
∑

k∈C xk = Zx ∈ R|A|

I feasible set: K = {x = (xk)k∈C |Nxk = bk , xk � 0, ∀ k ∈ C}
= {x ∈ R|A|×|C| |Ax = b, x � 0}

I Delay map S : R|A| → R|A| such that S(v) = (sa(va))a∈A

I Nash equilibrium: x? ∈ K such that for all x ∈ K∑
a∈A

v?a sa(v?a ) ≤
∑
a∈A

va sa(v?a ) ⇐⇒ S(v?)Tv? ≤ S(v?)Tv

⇐⇒ S(Zx?)TZx? ≤ S(Zx?)TZx
⇐⇒ F (x?)Tx? ≤ F (x?)Tx

=⇒ Nash eq. = solution to a VI with F (x) = ZTS(Zx)

Definition: variational inequality (VI)

VI(K,F ): find x? ∈ K such that F (x?)T (x− x?) ≥ 0, ∀ x ∈ K.

Appendix: traffic assignment problem 33



General traffic assignment problem

I commodity flow vectors: xk ∈ R|A| for all k ∈ C
I overall flow vector: x = (xk)k∈C ∈ R|A|×|C|

I aggregate flow vector: v =
∑

k∈C xk = Zx ∈ R|A|

I feasible set: K = {x = (xk)k∈C |Nxk = bk , xk � 0, ∀ k ∈ C}
= {x ∈ R|A|×|C| |Ax = b, x � 0}

I Delay map S : R|A| → R|A| such that S(v) = (sa(va))a∈A

I Nash equilibrium: x? ∈ K such that for all x ∈ K∑
a∈A

v?a sa(v?a ) ≤
∑
a∈A

va sa(v?a ) ⇐⇒ S(v?)Tv? ≤ S(v?)Tv

⇐⇒ S(Zx?)TZx? ≤ S(Zx?)TZx
⇐⇒ F (x?)Tx? ≤ F (x?)Tx

=⇒ Nash eq. = solution to a VI with F (x) = ZTS(Zx)

Definition: variational inequality (VI)

VI(K,F ): find x? ∈ K such that F (x?)T (x− x?) ≥ 0, ∀ x ∈ K.

Appendix: traffic assignment problem 33



General traffic assignment problem

I commodity flow vectors: xk ∈ R|A| for all k ∈ C
I overall flow vector: x = (xk)k∈C ∈ R|A|×|C|

I aggregate flow vector: v =
∑

k∈C xk = Zx ∈ R|A|

I feasible set: K = {x = (xk)k∈C |Nxk = bk , xk � 0, ∀ k ∈ C}
= {x ∈ R|A|×|C| |Ax = b, x � 0}

I Delay map S : R|A| → R|A| such that S(v) = (sa(va))a∈A

I Nash equilibrium: x? ∈ K such that for all x ∈ K∑
a∈A

v?a sa(v?a ) ≤
∑
a∈A

va sa(v?a ) ⇐⇒ S(v?)Tv? ≤ S(v?)Tv

⇐⇒ S(Zx?)TZx? ≤ S(Zx?)TZx
⇐⇒ F (x?)Tx? ≤ F (x?)Tx

=⇒ Nash eq. = solution to a VI with F (x) = ZTS(Zx)

Definition: variational inequality (VI)

VI(K,F ): find x? ∈ K such that F (x?)T (x− x?) ≥ 0, ∀ x ∈ K.

Appendix: traffic assignment problem 33



General traffic assignment problem

I commodity flow vectors: xk ∈ R|A| for all k ∈ C
I overall flow vector: x = (xk)k∈C ∈ R|A|×|C|

I aggregate flow vector: v =
∑

k∈C xk = Zx ∈ R|A|

I feasible set: K = {x = (xk)k∈C |Nxk = bk , xk � 0, ∀ k ∈ C}
= {x ∈ R|A|×|C| |Ax = b, x � 0}

I Delay map S : R|A| → R|A| such that S(v) = (sa(va))a∈A

I Nash equilibrium: x? ∈ K such that for all x ∈ K∑
a∈A

v?a sa(v?a ) ≤
∑
a∈A

va sa(v?a ) ⇐⇒ S(v?)Tv? ≤ S(v?)Tv

⇐⇒ S(Zx?)TZx? ≤ S(Zx?)TZx
⇐⇒ F (x?)Tx? ≤ F (x?)Tx

=⇒ Nash eq. = solution to a VI with F (x) = ZTS(Zx)

Definition: variational inequality (VI)

VI(K,F ): find x? ∈ K such that F (x?)T (x− x?) ≥ 0, ∀ x ∈ K.
Appendix: traffic assignment problem 33



Optimization process and Variational inequality

Theorem 1 (Beckmann et al. 1956)

Suppose the arc delay functions are nonnegative, continuous, mono-
tone, separable. Then the Nash equilibrium is solution of a convex
optimization program, denoted OP(K, f )

min f (x) s.t. Ax = b, x � 0

Remarks

I The potential f encodes the interaction between players.

I K := {x |Ax = b, x � 0} encodes the flow conservation.

Theorem 2

With f ∈ C 1, x? ∈ K is solution iff ∇f (x?)T (u− x?) ≥ 0, ∀u ∈ K.

Result from Beckmann: for the map F (x) = ZTS(Zx), ∃ f convex such
that F = ∇f
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