

Resilience of Networked Cyber-Physical Systems

Hamsa Balakrishnan

(with Karthik Gopalakrishnan, MIT & Richard Jordan, MIT LL)

Some properties of infrastructure networks

[Delay Data: Bureau of Transportation Statistics]

Traditional network theory	Properties of real-world infrastructures
Nodes and links in discrete states	States better modeled as continuous variables
Unweighted links	Interactions are weighted and directed
Undirected links (Eigenvector centrality)	(Hub and Authority scores)
Static network topology	Time-varying network topologies
\mathbf{FORCES}	

OUNDATIONS OF RESILIENT

BER-PHYSICAL SYSTEMS

A network-centric view of air traffic delays

* For example, delay levels on edges between airports

* Weighted, directed, time-varying networks

Simplistic model of delay dynamics

* Given an adjacency matrix, $A = [a_{ij}]$

* Therefore, for given network topology: $\vec{x}(t+1) = \Gamma(t)\vec{x}(t)$ where $\Gamma(t) = [\alpha] + [\beta] \begin{bmatrix} 0 & \overline{A}(t)^T \\ \overline{A}(t) & 0 \end{bmatrix}$ FORCES

[Gopalakrishnan et al. CDC 2016, sub.] ^{6/4/16}

Effect of network topology on delay dynamics

* Let us consider two different networks, A_1 and A_2 : How do we measure if they are similar or different?

- * Comparison of state evolution (delay dynamics)
 - * Effect of network topology is of the form $\overline{1}$

$$\vec{x}(t+1) = \beta \mathcal{A}\vec{x}(t)$$
 where $\mathcal{A} = \begin{pmatrix} 0 & A \\ \bar{A}^{\mathrm{T}} & 0 \end{pmatrix}$

- st Principal eigenvector of ${\cal A}$ forms an invariant subspace
- * Therefore, dynamics can be distinguished by the principal eigenvector and spectral radius of ${\cal A}$

* Comparison of network-theoretic properties

Network centrality: Hub and Authority scores

- * Strong hubs point to strong authorities; strong authorities are pointed to by strong hubs (Kleinberg 1997)
- * Extension of eigenvector centrality to directed graphs
- * Hub and authority scores can be calculated as the principal eigenvector of (Benzi et al. 2013)

$$\mathcal{A} = \left(\begin{array}{cc} 0 & \bar{A} \\ \bar{A}^{\mathrm{T}} & 0 \end{array}\right)$$

* Discrete modes determined by clustering based on:

- * Inbound and outbound delays at each airport
- * Hub and authority scores of each airport
- * System-wide delay trend (increasing/decreasing)

Dynamics with switching network topologies

Individual discrete modes

Stability of MJLS models

- * "Physical interpretation": Will delays increase or decrease over time (e.g., over the course of a day)?
- * Almost-Sure Stability: A system is said to be almost-surely stable if the state tends to zero as time tends to infinity with probability 1, that is,

$$\Pr[\lim_{k\to\infty}\|\vec{x}(k)\|=0]=1,$$

for any nonnegative initial condition $\vec{x}(0)$.

* Derive conditions for the stability of a discrete-time Markov Jump Linear System with time-varying transition matrices and continuous state resets (depends on Γ_i 's, $\pi_{ij}(t)$ and J_{ij})

Is the MJLS model of air traffic delays stable?

Check: Data suggests answer is yes, since delays dissipate overnight
 Suppose we consider an "average" mode transition matrix for each hour

* Resulting MJLS model is not stable

Stability of MJLS model

- * Consider stability of MJLS model with periodic time-varying mode transition matrices (determined by hour of day)
- * Resulting MJLS model shown to be stable
- System appears to be stabilized by the temporal variations in the mode transition matrices

MJLS model validation

* Model learned using 2011 data; validation using 2012 data

(BER-PHYSICAL SYSTEMS

Measure of airport resilience: Delay persistence

Next steps and open challenges

- * Analysis of dwell times in each discrete mode
 * How long does a 'delay state" tend to persist?
- Factors that trigger mode transitions
 Weather impacts, Traffic Management Initiatives
- * Prediction of future delays and delay states
- * Multi-layer, multi-timescale networks
 - * Cancellations, **operations**, capacity impact [ICRAT 2016]
 - Interactions between networks
- * Post-disruption recovery
- * and finally, revisiting an old problem...

Revisiting an old problem: Interactions between NextGen and legacy infrastructures

FAA Worried About ADS-B, 1090 MHz Interference

Aviation Week & Space Technology

John Croft

Thu, 2016-05-12 04:00

Radio frequency congestion is a side effect of ADS-B the FAA is working to alleviate

With Automatic Dependent Surveillance-Broadcast (ADS-B) equipage on the rise and a wholesale mandate for the NextGen surveillance technology less than four years away, the <u>FAA</u> is getting serious about how to deal with a downside of the upgrade—radio frequency interference.

The issue involves the 1090 MHz frequency and the potential ill effects of too many signals occupying too small a volume of airspace. That frequency is used not only by ADS-B transmitters but also by FAA air traffic control radars, airborne traffic-alert and collision warning systems (TCAS) and military identification friend-or-foe systems.

Potential mitigations include replacing terminal radars (those typically covering a 60-nm radius around larger airports) with wide-area multilateration (WAM) systems, modifications to ground-based radars and adoption of hybrid TCAS variants.

"It is like being at a concert—the louder the music, the more 1090 MHz traffic, the harder it is to hear the person next to you," says Rob Strain, a senior principal engineer with The Mitre Corp.'s FAA-sponsored Center for Advanced Aviation System Development. Mitre, a not-for-profit organization, is part of an industry group tasked by the FAA with analyzing the issue and suggesting potential fixes.

FORCES

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 15, NO. 2, APRIL 2014

Hybrid Communication Protocols and Control Algorithms for NextGen Aircraft Arrivals

Pangun Park, Harshad Khadilkar, Hamsa Balakrishnan, and Claire Tomlin

