

Resilient design and operation of urban water infrastructure networks

Lina Sela and Saurbh Amin, MIT

Challenge: How to ensure water security in the urban sector through resilient water networks aided by sensing and real-time data analytics?

May 28, 2015

Motivation: Smart water networks

Sensing Modeling Analytics and Real-time Technology (SMART)

Smart water networks

Objective

How to ensure water security in the urban sector through resilient water networks?

Challenges

- Infrastructure deterioration and risk of disruptions
- Demand-supply uncertainty
- Cyber-physical systems interdependency

- Strategic design of network of sensors
- Real-time data acquisition and analytics for fault diagnosis
- Active network control and demand management

Smart water networks

Objective

How to ensure water security in the urban sector through resilient water networks?

Challenges

- Infrastructure deterioration and risk of disruptions
- Demand-supply uncertainty
- Cyber-physical systems interdependency

Approach

- Strategic design of network of sensors
- Joint work with Waseem Abbas and Xenofon Koutsoukos Vanderbilt University

5

Water losses

Challenges

- Aging infrastructure
- Leaks & bursts

Impacts

- Service disruption
- Public health risk
- Waste of water and energy resources

Active leakage control

Network of sensor nodes

- What to sense?
- When to sense?
- Where to place the sensors?

DANGER AGING INFRASTRUCTURE

US:

- No regulations for auditing & reporting water losses from public water systems
- ~250K reported;
 - > 500K estimated breaks/year

Where to place the sensors?

Objective

Sensor placement for detection and location identification of bursts

Challenges

- Uncertainty in pipe failure events
- Uncertainty in sensing quality
- Budget constraints

Impacts

- Early detection of reported losses (visible)
- Detection of unreported losses (not visible)
- Improved localization

Problem formulation

Find the subset of sensor locations $S \subseteq S$ such that sensor network performance function, *f*, is maximized:

$$\max_{S\subseteq S} \left\{ f\left(\mathbf{S}; \mathcal{L}\right), \left| S \right| \le M \right\}$$

 $S = \{S_1, ..., S_m\}$: set of sensors $\mathcal{L} = \{\ell_1, ..., \ell_n\}$: set of failure events

Detection:

 $f_D(\mathbf{S}; \mathcal{L})$ - the number of events ℓ that are detected by the set of sensors S

Identification:

 $f_I(\mathbf{S}; \mathbf{L})$ - the number of pair-wise events (ℓ_i, ℓ_j) that are distinguishable by the set of sensors S

Network dynamics

Influence matrix represents events and sensors states:

$$\mathcal{M}(\mathcal{L}, \mathcal{S}) = \begin{bmatrix} \mathbf{y}_{\mathcal{S}}(\ell_1) \\ \vdots \\ \mathbf{y}_{\mathcal{S}}(\ell_n) \end{bmatrix}$$

 $S = \{S_1, ..., S_m\} - \text{set of sensors}$ $\mathcal{L} = \{\ell_1, ..., \ell_n\} - \text{set of failure events}$ $y_s(\ell_j) - \text{output of sensors in response to event } \ell_j$ $C_i \subseteq \mathcal{L} - \text{ is a set of link failures detected by } S_i$ $\mathcal{M}_{ij} = 1 - \text{ if sensor } S_i \text{ detects event } \ell_j; 0 \text{ otherwise}$

Detection as minimum set cover

Detection:

 Find the minimum number of sensors and their locations such that every link failure can be detected by at least one sensor

Minimum set cover (MSC) problem:

- Find the smallest number of sets in a family of sets that cover the family,
 i.e., their union is equal to the union of all sets in the family
- Submodular: $f(A \cup \{C\}) f(A) \ge f(B \cup \{C\}) f(B)$ $A \subseteq B \subseteq C$ and $C \in C \setminus B$
- Greedy solution with the best approximation ratio: $O(\ln k)$

Proposition 1: Detection of failures in the network is comparable to the set cover problem

Identification as minimum test cover

Identification:

 Find the minimum number of sensors and their locations so that every link failure can be uniquely identified, i.e., distinguished from any other link failure

Minimum test cover (MTC) problem:

 Unknown a fault must be classified in one of the given categories based on the outcome of the set of tests

Proposition 2: Identification of failures in the network is comparable to the test cover problem

Detection and identification

• Example (cont.):

					Output		Lo	Localization-set			
c (c c)				1	0		$\{\ell_1,\ell_2,\ell_3\}$				
$\boldsymbol{S}_A = \left\{\boldsymbol{S}_1, \boldsymbol{S}_7\right\}$				Г	0	1	{	$\{\ell_6,\cdots,\ell_{10}\}$			
					1	1		$\{\ell_4,\ell_5\}$			
				_		•	'	1			
		C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8		
$\mathcal{M} =$	ℓ_1	(1	1	1	0	1	0	0	0 \		
	ℓ_2	1	1	1	1	0	1	0	0		
	l3	1	1	0	1	1	0	0	1		
	ℓ_4	1	0	1	1	1	1	1	0		
	ℓ_5	1	0	1	1	0	1	1	0		
	l ₆	0	1	1	1	1	0	1	1		
	l7	0	0	1	1	1	1	1	1		
	ℓ_8	0	1	0	1	1	0	1	1		
	lo	0	0	1	1	0	1	1	1		
	ℓ_{10}	0	0	0	1	1	1	1	1 /		

- All events are detected
- Only three sets of events are identified

$$S_B = \left\{ S_1, S_2, S_3, S_5 \right\}$$

			C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8
$\mathcal{M} =$	ℓ_1	1	1	1	1	0	1	0	0	0 \
	ℓ_2		1	1	1	1	0	1	0	0
	l3	L	1	1	0	1	1	0	0	1
	ℓ_4	L	1	0	1	1	1	1	1	0
	ℓ_5	L	1	0	1	1	0	1	1	0
	ℓ_6	L	0	1	1	1	1	0	1	1
	l7	L	0	0	1	1	1	1	1	1
	ℓ_8	L	0	1	0	1	1	0	1	1
	lo		0	0	1	1	0	1	1	1
	ℓ_{10}	1	0	0	0	1	1	1	1	1 /

lъ

le

 ℓ_{10}

- All events are detected
- All events are uniquely identified

Solving the MTC problem

1. Input: given a set of sensors and a set of events

$$\boldsymbol{\mathcal{S}} = \left\{ S_1, \dots, S_m \right\}, \boldsymbol{\mathcal{L}} = \left\{ \ell_1, \dots, \ell_n \right\}$$

- **2.** Transform: MTC to MSC $\mathcal{L}, \mathcal{C} \rightarrow \mathcal{L}^t, \mathcal{C}^t$
 - obtain a new matrix $\mathcal{M}^t(\mathcal{L}^t, \mathcal{S})$ of dimension $\binom{n}{2} \times m$ such that $\mathcal{M}^t(e_{ij}, k) = 1$ if sensor k detects and distinguishes between events $\{\ell_i, \ell_j\}$; 0 otherwise
- 4. Solve: the counterpart MSC using greedy algorithm
 - 1. Start with an empty set: $S^* \leftarrow \emptyset$
 - Find the sensor that covers the most uncovered elements: Add to current cot: $S^* \leftarrow S^{*} \leftarrow$ 2
 - 3. Add to current set: $S^* \leftarrow S^* \cup S_{;}$
 - Repeat steps 2-3 until no more elements are covered 4.
- **5.** Output: $S^* \subset S$

Performance measures

Detection score

The number of events detected by the sensor set

$$I_D(\mathbf{S}; \mathbf{\mathcal{L}}) = \left| \bigcup_{C_j \in \mathbf{C}_S} C_j \right|$$

Identification score

The number of uniquely identified pairs of failure events

$$I_{I}(\mathbf{S}; \mathcal{L}) = \left| \bigcup_{C_{j}^{t} \in \mathcal{C}_{S}^{t}} C_{j}^{t} \right| = I_{D}\left(\mathbf{S}; \mathcal{L}^{t}\right)$$

Localization score

• The number of unique sensors' states I_s or the number of localization sets, i.e. unique rows in $\mathcal{M}(\mathcal{L}, S)$

$$I_L(\mathbf{S}; \mathbf{L}) = |I_S|$$

Application

|S| = 959 - number of potential sensor locations $|\mathcal{L}| = 1156$ - number of failure events

Example: Consider

 $S = \{S_1, S_2, S_3\}$

No. of detected events

$$I_D(\mathbf{S}; \mathbf{L}) = 586$$

No. of unique pair-wise events

$$I_I(\mathbf{S}; \mathbf{\mathcal{L}}) = 474,581$$
 out of: $\left| \mathbf{\mathcal{L}}^t \right| = \begin{pmatrix} 1156\\ 2 \end{pmatrix}$

No. of localization sets

$$I_L(\mathbf{S}; \mathcal{L}) = |I_S| = 7$$
 out of: $|\mathcal{L}| = 1156$

Kentucky network Adopted from Jolly et al 2014

- 260 km of total pipe length
- Daily supply ~ 1.5M gal/day
- 1 reservoirs; 4 storage tanks
- 959 nodes; 1156 pipes;

Network dynamics

Application

- Everything that is colored is detected
- Different colors represent unique localization sets, i.e. we can distinguish between events in different colored sets and cannot distinguish within same color set

Problem formulation > Network dynamics Minimum test cover > Performance evaluation

Detection vs. Identification

Detection score

Localization score

- TCP solution obtained solving the MTC problem
- SCP solution obtained solving the MSC problem

Smart water networks

Objective

How to ensure water security in the urban sector through resilient water networks?

Challenges

- Infrastructure deterioration and risk of disruptions
- Demand-supply uncertainty
- Cyber-physical systems interdependency

- Strategic design of network of sensors
- Real-time data acquisition and analytics for fault diagnosis
- Active network supply-demand control

Control of water networks

Objective

Strategic supply-demand control

Challenges

- Nonlinear network flow
- Collective vs. individual demand shedding

- Nonlinear network flow and demand modeling
- Convex approximation using geometric programming (GP)
- Standard convex solver (CVX + Mosek)

Geometric programming (GP) approach

Geometric programming

A class of structured convex optimization problems with special form objective and constraints:

 $\begin{array}{ll} \underset{x}{\text{minimize}} & f_0(x) \\ \text{subject to} & f_0(x) < 1 \quad i = 1, \dots, m \\ & h_i(x) = 1 \quad i = 1, \dots, l \\ & x > 0 \end{array}$

Where:

monomials:
$$h(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$$

posynomials: $f(x) = \sum_{j=1}^k c_j x_1^{a_{1j}}x_2^{a_{2j}}\cdots x_n^{a_{nj}}$

Network flow

- Flow conservation at nodes: $\forall i \in N$
- *k* link
- *i* start node
- j end node

- Energy conservation over links: $\forall k \in E$
- R resistance
 $R_k q_k^{\alpha} + H_j = H_i$ $R_k q_k^{\alpha} + H_j \leq H_i$ (2)

 α power
 inequality

 Operating pumps:
 $H_j = \beta_k H_i$ (3)
 $1 \leq \beta_k \leq \overline{\beta}_k$ (4)
 adding head
)

 Control valves:
 $H_j = \gamma_k H_i$ (5)
 $0 \leq \gamma_k \leq 1$ (6)
 decreasing head

 Operating range:
 $\underline{H}_i \leq H_i \leq \overline{H}_i$ (7)
 $\frac{q}{H_i}$ flow

 $H_i = \gamma_k H_i$ (7)
 $\frac{q}{H_i}$ flow

 $H_i = \lambda_i \leq H_i \leq \overline{H}_i$ (7)
 $\frac{q}{H_i}$ flow

 This problem formulation has a special structure conforming with geometric programming modeling constraints

23

Current formulation is suitable for tree network topology

Application

Controls:

- Pumps adding power to the system
- Control valves decreasing pressure
- Demand shedding for each demand zone

Costs:

- Energy cost for operating the pump
- Penalty cost for demand shedding
- Penalty cost for relaxing equality constraints

Constraints:

- Physical constraints
- Maximum available resources
- Maximum allowed demand shedding

Controlled demand shedding

Energy cost and supply deficiency penalty

 Trade-off between cost of energy and water resources and penalty for supply shortage

Individual demand shedding

- (i) Equal penalty downstream consumers suffer more
- (ii) Mixed penalties variable allocation 25

Sensor placement

- Better approximation of the physical disturbance model
- Robustness to sensor failures
- Heterogeneous sensors

Network control

- Extension to looped topologies
- Supply-demand management for different operational regimes
- Demand response through water pricing schemes

Thank you!