
12.5 Years Teaching
Distributed Embedded

System Design
Philip Koopman
October 24, 2012

http://www.ece.cmu.edu/~ece649

2

Experienced Teams: ~90 Industry Design Reviews

Risk Items

0 2 4 6 8 10 12 14 16

Process Gap

Process Failure

Things Not Written Down

Inadequate Written Down

Management Dysfunction & People

Technical Risks

Only about 1/3 of risk areas are technical

Process
Problems

3

The Course: 18-649 Distributed Embedded Systems
 The “build an elevator” course

• 1/3 Software engineering skills
• 1/3 Distributed embedded systems (e.g., CAN)
• 1/3 Safety + Reliability + Validation
• Semester-long software project

 Informed by:
• Book based on industry design reviews
• Lots of trial and error

 What it IS and IS NOT
• NOT tool-centric; uses some UML
• NO hardware; teaches discrete event simulation / Java
• IS highly distributed; simulated CAN; prohibits use of a “brain node”
• HAS rigorous traceability from requirements to design to tests
• NOT “heavy” process, but strives for lightest weight that teaches concepts
• NOT a capstone design project – process more than whizzy product

4

The Project: Highly Distributed Elevator

[Strakosch98]

+ Multiple
Simulated
Passengers

6

Project Hand-In Via Portfolio
 Printable HTML to keep things sane

• We provide the format; they fill it in; end-to-end updates every week

7

Brief History of Project Evolution
 Domain Expertise: I spent industry time working with Otis on elevators

• Including time on a next-generation architecture team
• Including embedded network protocol tradeoff study
• Challenge: creating a gritty, realistic project requires domain expertise

 1999 – First Project
• Developed requirements, simulator, and simulated passengers
• One cycle through a guided, somewhat ad hoc, waterfall process
• Seven project phases @ 2 weeks each

 Current Project
• More Elevator control functions

– Main motor dynamics (build-in): requires commit point calculation
– Doors on both side; door nudge behavior
– Random cable slip: requires low-speed leveling
– Time-accurate CAN network (deadline monotic scheduling); but no CPU real time

• Three iteration design process (“dumb” to “smart”) for requirements changes
• Thirteen projects, mostly weekly; end-to-end traceability for each hand-in

8

Main Project Goals
 Solo and group development (and time management)

• Many “simple” modules that must work in concert with others
• Dispatcher (where does elevator stop next) can get complex

 Technical aspects
• Basic UML literacy – all designs are state charts, not flow charts
• Deadline monotonic scheduling for CAN bus
• Inherent race condition in elevator (door re-open vs. main drive turns on)

 Complex design process
• Flexibility within fixed constraints (high level reqs; fixed interface defns)
• Concurrent design, implementation, unit test of different modules
• Multi-iteration; requirements changes from “dumb” to “smart” elevator
• Tons of info (examples; source code); learn how to sort through it

 Realistic but lightweight process, including quality
• Including SQA, traceability – seeing how things fit together
• Doing enough peer review to experience the benefits
• Doing enough testing to understand how to create effective tests

9

The Design Process We Teach
 Need to address the entire process (not just the tool chain part)

• Teach some domain expertise
• Requirements – provide high level requirements
• Architecture – takes about 6 weeks to understand distributed approach
• Use cases – provided as a kickstart
• Sequence diagrams – provide some; they do the rest (Visio or Dia)
• “Behaviors” – intermediate step to avoid exhaustive sequence diagram creation
• Statecharts – by hand (Visio or Dia)
• Code generation – by hand (Java, simulation framework provided)
• Unit Test – test framework provided; traces to statecharts
• Integration test – test framework provided; traces to sequence diagrams
• System test – simulated passengers
• Acceptance test – high level requirements run-time monitor; safety brake
• Traceability required between big steps; must be updated

 Challenge: tool support that doesn’t hide the fundamentals
• In our case, little automation but careful attention to make project “simple”
• Downside – only works if everyone does the same high level project

10

Project Teams
 Essentially all teams are computer engineering students

• Some are mostly hardware; some are mostly software; a few with
little background

 Teams of 3 or 4
• Team of 2 is too

much work
• I want to avoid

teams of 5 –
process isn’t
heavy enough

• 3 vs. 4 makes no
difference to
weekly effort(!)

11

Before Peer Review Spreadsheet (Ineffective Reviews)

12

After Spreadsheet & Weekly Defect Reporting

More Bugs Found Up Front

Better Quality
Less Thrashing
At End

13

CPS Challenges – Time Triggered Design
 Students have trouble with time-triggered design

• Almost all think event-triggered at start of course
• Jumping direct to time-triggered easily loses half of them
• Approach:

– Do simple design (not code) event-triggered at first….
… then re-do the same design as time-triggered

– Have a really simple bright-line test for difference (event triggered takes one input
message; time triggered can have multiple input messages)

 Time triggered wrinkles
• Defining “any order is OK” for multiple arcs on sequence diagrams
• Students take a while to get synchronous state charts vs. async.
• Need to limit control loop speeds for realism (not doing CPU scheduling)
• Students tend to play with timing to skirt (not cure) race conditions

14

Other CPS-Relevant Challenges
 Control system dynamics

• Students need to understand dynamics for timing floor landings
– Need to predict when to send “slow down” command to hit targer floor

• But, discrete event simulator makes it painful for them to create controls

 How do you know the system is working?
• “Seems to work” isn’t good enough for the real world – or realistic project

– Students have usually been trained to hack away until it passes an easy test
– It has to really work, all the time, for all test cases, for all timings
– Need to instill and practice notions of “test coverage”

• For example, “Elevator doors only open when call pending at that floor”
• Our solutions:

– Originally – use trace dump and grep/perl (ugly)
– Currently – students build in system monitors for critical properties

 Hard to do it all in one semester (12 unit course = 4 semester hours):
• Need significant lecture content, so project scope is limited
• Light on: RTOS, security, control systems, hardware aspects

15

18-649 Lecture Topics
1. Overview
2. Elevator domain knowledge
3. Boeing 777 validation video
4. Requirements & methodical

engineering
5. UML-based design
6. End-to-end project design example

on soda vending machine
7. Distributed systems applied to

embedded control
8. Reviews & software process
9. Testing
10. Communication protocols
11. CAN protocol case study
12. CAN performance

Test #1; mid-semester project demos

13. Economics (HW and SW)
14. Advanced elevator behavior
15. Verification/validation/certification
16. Distributed real time scheduling
17. Humans as a system component
18. Dependability
19. High integrity (critical) system

design
20. Safety standards (e.g. IEC 61508)
21. Distributed time
22. Security & internet connectivity
23. FlexRay Protocol case study
24. Ethics & Societal impact

Test #2; final project demos

16

Topic Areas Covered In Text (omits networks)
 Introduction

Software Development Process
• Written development plan
• How much paper is enough?
• How much paper is too much?

 Requirements & Architecture
• Written requirements
• Measureable requirements
• Tracing requirements to test
• Non-functional requirements
• Requirement churn
• Software architecture
• Modularity

 Design
• Software design
• Statecharts and modes
• Real time
• User interface design

 Implementation
• How much assembly language is enough?
• Coding style
• The cost of nearly full resources
• Global variables are evil
• Mutexes and data access concurrency

 Verification & Validation
• Static checking and compiler warnings
• Peer reviews
• Testing and test plans
• Issue tracking & analysis
• Run-time error logs

 Critical System Properties
• Dependability
• Security
• Safety
• Watchdog timers
• System reset
• Conclusions

17

Engineering Challenges Beyond Technical Stuff
 Students often value technology more than engineering methods

• Students benefit from having followed a defined process
• CAD-like tool chains implicitly tend to enforce a process…

– … but students may not be able to extend that thinking beyond the tools
• A good design project can teach most of them to understand value of process

– Peer reviews that actually find defects
– Design approaches that find bugs before the code is written
– Tests that actually find problems early

 Consider the right balance of what skills to teach
• We usually teach engineers to design cool new demos from scratch, but…

• Many engineers spend their time modifying, not building from scratch
• Many engineers spend their time testing, not designing from scratch
• Many engineers have to make rock-solid systems, not flaky demos
• Many engineers have to play together on a team with a defined process
• Most engineers are de facto software engineers .. but are not trained that way

