12.5 Years Teaching
Distributed Embedded
System Design

Philip Koopman
October 24, 2012
http://www.ece.cmu.edu/~ece649

ectrica omputer I’ Ilegie
) ENGINEERING Ca
\ Mellon

Experienced Teams: ~90 Industry Design Reviews

Management Dysfunction & People

Inadequate Written Down

Things Not Written Down _(

\
—~ Process
//

Problems

Process Failure - &

0 2 Z 6 8 10 12 14 16

Risk Items

Only about 1/3 of risk areas are technical

The Course: 18-649 Distributed Embedded Systems

¢ The “build an elevator” course
« 1/3 Software engineering skills
« 1/3 Distributed embedded systems (e.g., CAN)
» 1/3 Safety + Reliability + Validation
o Semester-long software project

¢ Informed by:

- | I IlePLEMENTATlON DESIGN
« Book based on industry design reviews i muwmfﬁsgcum
* Lots of trial and error SN N nzpawug@nu v
®) ARC;-IITE TJ,UREQZH S
Ng@{ﬁwc ochgim R
¢ What it ISand IS NOT Y48 Gy

* NOT tool-centric; uses some UML :

* NO hardware; teaches discrete event simulation / Java

IS highly distributed; simulated CAN; prohibits use of a “brain node”

* HAS rigorous traceability from requirements to design to tests

 NOT “heavy” process, but strives for lightest weight that teaches concepts
* NOT a capstone design project — process more than whizzy product

The Project: Highly Distributed Elevator

Controller Selector
Machine
Generator
Governor
Deflector Sheave —
Hoist Ropes —— — Selector Driving Tape
Roller Guides ——
Door Operator ——
Car ———
Car Door ———
Safety Shoe
[- ,
Car Guide Rails — ? Car Safety Device
Traveling Cables —
— Counterweight
Hoistway Entrance -—E
- Counterweight Guide Rails
Car Buffer — r Counterweight Buffer

[Strakosch98] AN ¢ ~— Governor Tension Sheave

Elevator Architecture Diagram
(revised 1/24/2011)

Elevator Control System

Door Reversal 4 ”
4 Emergency Brake
Smart Sensor Safety e
1
Actuator
Door Closed P . m—
2 Hoistway Limit
Smart Sensor 4
Sensor
Door Opened 1
1 | Drive Control o Drive
Smart Sensor 4
< Actuator
Level 1 Drivespeed
Smart Sensor 2 Sonsor
1 Car Position Control 1 Car Position Indicator
Door Motor 1 Door Control 4 »
< Actuator
Actuator
FH+BH At Floor
Smart Sensor
Car Lantern 1 Lantern Control 2
+ M u | t I p I e Actuator 1 Car Level Position
. I d Dispatcher 1 Smart Sensor
SI I I I u ate ' - 1 Car Weight
Sends DesiredFloor(f, d) and DesiredDwell(b, n)
Passengers
1 Car Weight Alarm
Car Call
Hall Call 1 Hall Button Control 2*(FH+BH) -3 1
- Smart Actuator
Sensor Setwor
Car Button Control
FH+BH Car Liaht
Hall Light < 1 artg
Actuator Actuator

BLUE BOX. Sensors/Actuators
BLACK BOX: Controllers

f = total # of floors
FH = # of front hall entries
BH = # of back hall entries

—» BLUE ARC: Physical Connection
BLACK ARC: Network Message

Project Hand-In Via Portfolio

¢ Printable HTML to keep things sane
» We provide the format; they fill it in; end-to-end updates every week

Portfolio Overview

® Design
o Architecture Diagram - The architecture diagram describes the objects present in the system, the replication of di
@ Use Cases - The use case diagram describes the ways that agents in the system can interact with the elevator anc

o Scenarios and Sequence Diagrams - Scenarios describe user interaction with the system. Sequence diagrams de
o Requirementis [- System Object Descriptions and Message Dictionary - A list of the sensors and actuators in the
o Requirements II - Distributed Controller Requirements - Detailed specifications for the all controllers in the systes
Traceability
o Sequence Diagrams to Requirements Traceability (Event Triggered) - forward and backoward traceability from se
m Note: in the elevator project, vou will only have one Sequence Diagrams to Eequirements Traceability do
(Projd) are both included here in the example project to help make the complete process clear.
o Sequence Diagrams to Requirements Traceability (Time Triggered) - forward and backward traceability from se
o Requiremenis to Contstraints Traceability - <description here>**
o Statecharts to Code Traceability - <description herg=>**
Implementation
o Elevator Control Package - <description here> **
* Test
© Unit Test Log - <description here=**
o Unit Test Summary File - parseable list of unit test files
o Integration Test Log - <description here>**
o Integration Test Summary File - parseable list of integration test files
o Acceptance Test Log - <description here=**
o Fault Tolerance Test Log - omitted from example™*
Log Files
o Issue Log - <description here>**

o Improvements Log - <description here=**
Scheduling
o Wetwork Schedule - <description here="*

Brief History of Project Evolution

¢ Domain Expertise: | spent industry time working with Otis on elevators
 Including time on a next-generation architecture team
 Including embedded network protocol tradeoff study
» Challenge: creating a gritty, realistic project requires domain expertise

¢ 1999 - First Project
» Developed requirements, simulator, and simulated passengers
e One cycle through a guided, somewhat ad hoc, waterfall process
» Seven project phases @ 2 weeks each

¢ Current Project
» More Elevator control functions
— Main motor dynamics (build-in): requires commit point calculation
— Doors on both side; door nudge behavior
— Random cable slip: requires low-speed leveling
— Time-accurate CAN network (deadline monotic scheduling); but no CPU real time
» Three iteration design process (“dumb” to “smart”) for requirements changes

« Thirteen projects, mostly weekly; end-to-end traceability for each hand-in

Main Project Goals

¢ Solo and group development (and time management)
* Many “simple” modules that must work in concert with others
» Dispatcher (where does elevator stop next) can get complex

¢ Technical aspects
« Basic UML literacy — all designs are state charts, not flow charts
» Deadline monotonic scheduling for CAN bus
 Inherent race condition in elevator (door re-open vs. main drive turns on)

¢ Complex design process
 Flexibility within fixed constraints (high level regs; fixed interface defns)
« Concurrent design, implementation, unit test of different modules
« Multi-iteration; requirements changes from “dumb” to “smart” elevator
» Tons of info (examples; source code); learn how to sort through it
¢ Realistic but lightweight process, including quality
* Including SQA, traceability — seeing how things fit together
» Doing enough peer review to experience the benefits
» Doing enough testing to understand how to create effective tests

The Design Process We Teach

¢ Need to address the entire process (not just the tool chain part)
» Teach some domain expertise
* Requirements — provide high level requirements
» Architecture — takes about 6 weeks to understand distributed approach
» Use cases — provided as a kickstart
« Sequence diagrams — provide some; they do the rest (Visio or Dia)
« “Behaviors” — intermediate step to avoid exhaustive sequence diagram creation
» Statecharts — by hand (Visio or Dia)
» Code generation — by hand (Java, simulation framework provided)
o Unit Test — test framework provided; traces to statecharts
 Integration test — test framework provided; traces to sequence diagrams
» System test — simulated passengers
« Acceptance test — high level requirements run-time monitor; safety brake
» Traceability required between big steps; must be updated

¢ Challenge: tool support that doesn’t hide the fundamentals
* Inour case, little automation but careful attention to make project “simple”
» Downside — only works if everyone does the same high level project

Project Teams

¢ Essentially all teams are computer engineering students

e Some are mostly hardware; some are mostly software; a few with
little background _
18-649 Spring 2007
Self-Reported Average Student Effort (Hours/Week)

¢ Teamsof3or4 18

1 16
* Team Of 2 1 100 m Median Value:
much work b , 11-2hrsiwk .

—
a2

« | want to avoid -

teams of 5 — . :

o0

Hours/Week {Mean)
=

process isn’t

B M Students In Team Of 3

heaVy enough Students In Team Of 4

° 3 VS. 4 makes NO Per-Team Average

difference to
weekly effort(!)

10

Before Peer Review Spreadsheet (Ineffective Reviews)

Spring 2010 18-649 Student Hours

< Median
— Mean

30 12 Hrs/Wk

Average Median =12.9
Average Mean =13.4

()
o

Weekly Hours

10

0 2 4 6 8 10 12 14 16

11

After Spreadsheet & Weekly Defect Reporting

Spring 2011 18-649 Student Hours

30.0

N
o
o

Weekly Hours

10.0

0 2 4 6 8 10 12 14 16

12

CPS Challenges — Time Triggered Design

¢ Students have trouble with time-triggered design
« Almost all think event-triggered at start of course
« Jumping direct to time-triggered easily loses half of them

e Approach:

— Do simple design (not code) event-triggered at first....
... then re-do the same design as time-triggered

— Have a really simple bright-line test for difference (event triggered takes one input
message; time triggered can have multiple input messages)

¢ Time triggered wrinkles
« Defining “any order is OK” for multiple arcs on sequence diagrams
» Students take a while to get synchronous state charts vs. async.
* Need to limit control loop speeds for realism (not doing CPU scheduling)
 Students tend to play with timing to skirt (not cure) race conditions

13

Other CPS-Relevant Challenges

¢ Control system dynamics
 Students need to understand dynamics for timing floor landings
— Need to predict when to send “slow down” command to hit targer floor
o But, discrete event simulator makes it painful for them to create controls

¢ How do you know the system is working?

o “Seems to work” isn’t good enough for the real world — or realistic project
— Students have usually been trained to hack away until it passes an easy test
— It has to really work, all the time, for all test cases, for all timings
— Need to instill and practice notions of “test coverage”
» For example, “Elevator doors only open when call pending at that floor”
 Our solutions:
— Originally — use trace dump and grep/perl (ugly)
— Currently — students build in system monitors for critical properties

¢ Hard to do it all in one semester (12 unit course = 4 semester hours):
» Need significant lecture content, so project scope is limited
« Light on: RTOS, security, control systems, hardware aspects

14

H w0 o

18-649 Lecture Topics

Overview

Elevator domain knowledge
Boeing 777 validation video
Requirements & methodical
engineering

UML-based design

End-to-end project design example
on soda vending machine

Distributed systems applied to
embedded control

Reviews & software process
Testing

10. Communication protocols
11. CAN protocol case study
12. CAN performance

Test #1; mid-semester project demos

13.
14.
15.
16.
17.
18.
19.

20.
21.
22,
23.
24,

Economics (HW and SW)
Advanced elevator behavior
Verification/validation/certification
Distributed real time scheduling
Humans as a system component
Dependability

High integrity (critical) system
design

Safety standards (e.g. IEC 61508)
Distributed time

Security & internet connectivity
FlexRay Protocol case study
Ethics & Societal impact

Test #2; final project demos

15

Topic Areas Covered In Text (omits networks)

¢ Introduction

Software Development Process

Written development plan
How much paper is enough?
How much paper is too much?

¢ Requirements & Architecture

Written requirements
Measureable requirements
Tracing requirements to test
Non-functional requirements
Requirement churn

Software architecture
Modularity

¢ Design

Software design
Statecharts and modes
Real time

User interface design

¢ Implementation

How much assembly language is enough?
Coding style

The cost of nearly full resources

Global variables are evil

Mutexes and data access concurrency

¢ Verification & Validation

Static checking and compiler warnings
Peer reviews

Testing and test plans

Issue tracking & analysis

Run-time error logs

¢ Critical System Properties

Dependability
Security

Safety
Watchdog timers
System reset
Conclusions

16

Engineering Challenges Beyond Technical Stuff

¢ Students often value technology more than engineering methods
 Students benefit from having followed a defined process
« CAD-like tool chains implicitly tend to enforce a process...

— ... but students may not be able to extend that thinking beyond the tools

» A good design project can teach most of them to understand value of process

— Peer reviews that actually find defects
— Design approaches that find bugs before the code is written
— Tests that actually find problems early

¢ Consider the right balance of what skills to teach

We usually teach engineers to design cool new demos from scratch, but...

Many engineers spend their time modifying, not building from scratch

Many engineers spend their time testing, not designing from scratch

Many engineers have to make rock-solid systems, not flaky demos

Many engineers have to play together on a team with a defined process

Most engineers are de facto software engineers .. but are not trained that way

17

