
Protecting Virtual Calls in
Binary Programs:
From COTS Applications To CPS Applications

Chao Zhang (UC Berkeley)

Dawn Song (UC Berkeley)



Page 2

Lots of attack targets
(cars, traffic lights, navigation routes, signs, …)

What do they have in common?

Software vulnerabilities and exploits.



Page 3

 Existing solutions are not sufficient
 Vulnerabilities are inevitable when designing and implementing.

 Testing is not able to find out all potential vulnerabilities.

 Runtime protection is not sufficient, and has compatibility issues.

 Proactive program hardening is a promising solution

Secure Software Development Life Cycle

Security
Requirement

Use Case Risk Analysis

Security
Training

External
Review

Security
Analysis

Analysis
Design &

Implement Compile Testing Release Run

Security
Testing

Risk
Analysis

Penetration
Testing

Security Policy
Enforcement

Program
Hardening

Program
Hardening



Page 4

 Fix vulnerabilities

 Deploy security checks

Program Hardening



Page 55

Our Solutions



Page 6

Know your enemy first.

Sun Tzu

To select a security policy and enforce it,



Page 7

 A common way to exploit

Real World Attacks: VTable Hijacking

use
after
free

format
string

heap
overflow

…

VTable
Hijacking

Google:
"80% attacks exploit use-after-free...”
Microsoft:
50% CVEs targeted Winows7 are UAF

• written in C++
• BIG Targets in the Cloud



Page 8

 A data structure for supporting dynamic dispatch (C++)

What is VTable?

class Base1{… };   // virtual function vf1~vf10
class Base2{… };   // virtual function vg1~vg10
class Sub: Base1, Base2{… };

void foo(Base2* obj) { 
// What function will be invoked? 
// Depending on the runtime object.   
obj->vg4(); 

}

void main(){
Base2* b2 = new Base2();
foo(b2);
Sub* s = new Sub();
foo(s);

}



Page 9

 VTable corruption

 overwrite VTable

 VTable injection

 VTable reuse

VTable Hijacking

shellcode()

…

shellcode()



Page 10

 VTable corruption

 overwrite VTable

 VTable injection

 overwrite vfptr

 point to fake VTable

 VTable reuse

VTable Hijacking

new_vfptr



Page 11

 VTable corruption

 overwrite VTable

 VTable injection

 overwrite vfptr

 point to fake VTable

 VTable reuse

 overwrite vfptr

 point to existing VTable, data etc.

VTable Hijacking

new_vfptr



Page 12

 Goal: defense against VTable Hijacking

 lightweight

 binary program support

 effective

 What security policies to deploy?

 How to deploy these policies to binary programs?

The Question



Our solution: VTint

Motivation

VTint Design

VTint Implementation

Evaluation on COTS Applications

Investigation on CPS Applications



Page 14

Observation

Attack Requirement

VTable Corruption overwrite VTable VTable is writable

VTable Injection overwrite vfptr,
point to injected VTable

VTable is writable

VTable Reuse overwrite vfptr,
point to existing VTable/data

VTable-like data,
existing VTable



Page 15

Observation  Intuition

Attack Requirement Countermeasure

VTable Corruption overwrite VTable VTable is writable Read-only VTable

VTable Injection overwrite vfptr,
point to injected VTable

VTable is writable Read-only VTable

VTable Reuse overwrite vfptr,
point to existing VTable/data

VTable-like data,
existing VTable

different VTable/data

Need exact TYPE information

Light weight source-code solutions like VTGuard



Page 16

 Policy 1:
 legitimate VTables should be placed in read-only memory

 attackers cannot corrupt legitimate VTables

 Policy 2:
 only read-only VTables can be used in runtime virtual calls

 attackers cannot inject fake VTables

 Policy 3:
 legitimate VTables are different from other data

 attackers can hardly reuse other data as VTables

The security policy



Our solution: VTint

Motivation

VTint Design

VTint Implementation

Evaluation on COTS Applications

Investigation on CPS Applications



Page 18

 Source code  Native code

Challenges

class Base1{… };   // virtual function vf1~vf10
class Base2{… };   // virtual function vg1~vg10
class Sub: Base1, Base2{… };

void foo(Base2* obj) {  
obj->vg4();  

}

void main(){
Base1* b1 = new Base1();
Base2* b2 = new Base2();
foo(b2);
Sub* s = new Sub();
foo(s);

}

• A lot of information are missing
• types, virtual call, VTables…

• How to recover high-level information from binary programs?
• Which are virtual calls
• Which are VTables?



Page 19

 Binary parsing
 candidate VTables

 candidate functions

 Disassembling
 code/data

 constructor functions

 VTables

 virtual calls

 Binary rewriting

Architecture



Page 20

 Security Policy

 Place legitimate VTables in read-only sections

 Enforce runtime VTables to be read-only

 Differentiate VTables from other data

 Rewriting

Binary Rewriting

(Read-only page)

VTable 1

VTable 2

VTable …

VTID ; get vtable ptr from object
mov eax, [ecx+8]

; get virtual func ptr from vtable
mov edx, [eax+24]
; call virtual function
call edx

check vtable page is read-only

check vtable page has VTID



Our solution: VTint

Motivation

VTint Design

VTint Implementation

Evaluation on COTS Applications

Investigation on CPS Applications



Page 22

 Firefox analysis

 fast analysis for each module

 small file size overhead

Static Analysis Results



Page 23

 Firefox

Performance Evaluation

 Chrome

• Average performance overhead is less than 2%



Page 24

Attack Surface of Firefox



Page 25

 Real World Exploits

Protection Effect



Page 26

 Binary disassembling

 High-level information recovery

 Constructor functions

 VTables

 Virtual function calls

 Reusing existing VTables

 call existing virtual functions

Limitations



Our solution: VTint

Motivation

VTint Design

VTint Implementation

Evaluation on COTS Applications

Investigation on CPS Applications



Page 28

 C++ is mature and efficient programming language, widely used
in COTS application development

 CPS applications also utilize C++

 Simulators based on SystemC

 Modeling Time-Triggered Ethernet in SystemC/TLM for Virtual 
Prototyping of Cyber-Physical Systems

 Middleware developed in C++

 The Design and Performance of Cyber-Physical Middleware for Real-
Time Hybrid Structural Testing, wucse-2009-27 

 Hardware control system, Network Communication etc.

 HVDC industrial controller

CPS Applications Written in C++



Page 29

Sample



Page 30

 Most modules have virtual calls and VTables

 The attack surface is large enough for real world attacks.

Attack Surface of OpenDaVINCI



Page 31

 VTable hijacking is popular and critical

 Real-world exploits against COTS applications exist.

 CPS applications also have a large attack surface.

 Existing solutions are not perfect

 VTint is a lightweight, binary-compatible and effective defense 
against VTable hijacking, similar to DEP

Conclusion



Thanks!

Q&A


