Distributed learning model

Estimation of Learning Rates

Optimal Control

Distributed Learning, Estimation and Control In the Routing Game

Walid Krichene

Alexandre Bayen

Dept. of Electrical Engineering & Computer Sciences, UC Berkeley, CA, USA

1/12

Distributed learning model 000	Estimation of Learning Rates	Optimal Control	References
Learning dynam	ics in the routing game		
 Routing game 	s model congestion on network	S.	

• Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to understand decision dynamics (learning).

• A realistic model for decision dynamics is essential for prediction, control.

Distributed learning model 000	Estimation of Learning Rates	Optimal Control	References
Learning dynam	ics in the routing game		

- Routing games model congestion on networks.
- Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to understand decision dynamics (learning).

• A realistic model for decision dynamics is essential for prediction, control.

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
Learning dynam	ics in the routing game		

- Routing games model congestion on networks.
- Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to understand decision dynamics (learning).

• A realistic model for decision dynamics is essential for prediction, control.

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
Desiderata			

Learning dynamics should be

- Realistic in terms of information requirements, computational complexity.
- Consistent with the full information Nash equilibrium.

 $x^{(t)} o \mathcal{X}^{\star}$

• Robust to stochastic perturbations, e.g. observation noise.

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
Desiderata			

Learning dynamics should be

- Realistic in terms of information requirements, computational complexity.
- Consistent with the full information Nash equilibrium.

 $x^{(t)} \to \mathcal{X}^{\star}$

Robust to stochastic perturbations, e.g. observation noise.

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
Desiderata			

Learning dynamics should be

- Realistic in terms of information requirements, computational complexity.
- Consistent with the full information Nash equilibrium.

 $x^{(t)} \to \mathcal{X}^{\star}$

• Robust to stochastic perturbations, e.g. observation noise.

Distributed learning model 000	Estimation of Learning Rates	Optimal Control	References
Outline			

Distributed learning model

2 Estimation of Learning Rates

Optimal Control

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
Outline			

Distributed learning model

2 Estimation of Learning Rates

Optimal Control

Distributed learning model ●೦೦	Estimation of Learning Rates	Optimal Control	References
Online learning	in the routing game		
 Player drives f 	rom source to destination node		

- Chooses path from \mathcal{A}_k
- Mass of players on each edge determines cost on that edge.

Figure: Routing game

Distributed learning model ●೦೦	Estimation of Learning Rates	Optimal Control	References
Online learning	in the routing game		
 Player drives f 	rom source to destination node		

- Chooses path from \mathcal{A}_k
- Mass of players on each edge determines cost on that edge.

Figure: Routing game

Distributed learning model •୦୦	Estimation of Learning Rates	Optimal Control	References
Online learning i	n the routing game		
Online Learning Model			
1: for $t \in \mathbb{N}$ do 2: Play $p \sim x_{\mathcal{A}_k}^{(t)}$ 3: Discover $\ell_{\mathcal{A}_k}^{(t)}$			

- 4: Update $x_{\mathcal{A}_k}^{(t+1)} = u_k \left(x_{\mathcal{A}_k}^{(t)}, \ell_{\mathcal{A}_k}^{(t)} \right)$
- 5: end for

Main problem

Define class of dynamics C such that

Distributed learning model •୦୦	Estimation of Learning Rates	Optimal Control	References
Online learning i	n the routing game		
Online Learning Model			
1: for $t \in \mathbb{N}$ do			
2: Play $p \sim x_{\mathcal{A}_k}^{(t)}$			
3: Discover $\ell_{\mathcal{A}_{k}}^{(t)}$			
(t+1)	$\begin{pmatrix} (t) & c(t) \end{pmatrix}$		

- 4: Update $x_{\mathcal{A}_k}^{(t+1)} = u_k \left(x_{\mathcal{A}_k}^{(t)}, \ell_{\mathcal{A}_k}^{(t)} \right)$
- 5: end for

Main problem

Define class of dynamics C such that

Distributed lear ●○○	rning model	Estimation of Learning Rates	Optimal Control	References
Onli	ne learning in	the routing game		
Online	e Learning Model			
1: fo	$\mathbf{r} \ t \in \mathbb{N} \ \mathbf{do}$			
2:	Play $p \sim x_{\mathcal{A}_k}^{(t)}$			
3:	Discover $\ell_{\mathcal{A}_k}^{(t)}$			
4:	Update $x_{\mathcal{A}_k}^{(t+1)} = u$	$_{k}\left(\mathbf{x}_{\mathcal{A}_{k}}^{\left(t\right)},\ell_{\mathcal{A}_{k}}^{\left(t ight)} ight)$		

5: end for

Main problem

Define class of dynamics $\ensuremath{\mathcal{C}}$ such that

$$u_k \in \mathcal{C} \ \forall k \Rightarrow x^{(t)} \to \mathcal{X}^*$$

Distributed learning model ○●○	Estimation of Learning Rates	Optimal Control 000	References
Stochastic conv	ex optimization		
ldea:			

- The set of Nash equilibria is $\arg \min_{x \in \mathcal{X}} f(x)$ (the Rosenthal potential).
- View the learning dynamics as a distributed algorithm to minimize f.

- η_t: learning rate
- D_{ψ} : Bregman divergence

Distributed learning model ○●○	Estimation of Learning Rates	Optimal Control 000	References
Stochastic conv	ex optimization		
ldea:			

- The set of Nash equilibria is $\arg \min_{x \in \mathcal{X}} f(x)$ (the Rosenthal potential).
- View the learning dynamics as a distributed algorithm to minimize f.

- η_t : learning rate
- D_{ψ} : Bregman divergence

 $f(x^{(t)})$

 $f(x^{(t+1)})$

Distributed learning model ○●○	Estimation of Learning Rates	Optimal Control	References
Stochastic conv	ex optimization		
ldea:			

- The set of Nash equilibria is $\arg \min_{x \in \mathcal{X}} f(x)$ (the Rosenthal potential).
- View the learning dynamics as a distributed algorithm to minimize f.

Algorithm 2 SMD Method1: for $t \in \mathbb{N}$ do2: observe $\hat{\ell}_{\mathcal{A}_k}^{(t)}$ with $\mathbb{E}\left[\hat{\ell}_{\mathcal{A}_k}^{(t)} | \mathcal{F}_{t-1}\right] \in \partial_{\mathcal{A}_k} f(x^{(t)})$ 3: $x_{\mathcal{A}_k}^{(t+1)} = \arg\min_{x \in \mathcal{X}_{\mathcal{A}_k}} \left\langle \hat{\ell}_{\mathcal{A}_k}^{(t)}, x \right\rangle + \frac{1}{\eta_t^k} D_{\psi_k}(x, x_{\mathcal{A}_k}^{(t)})$ 4: end for

- η_t : learning rate
- D_{ψ} : Bregman divergence

Convergence of Distributed Stochastic Mirror Descent

For
$$\eta_t^k = \frac{\theta_k}{t^{\alpha_k}}, \ \alpha_k \in (0, 1),$$
$$\mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = \mathcal{O}\left(\sum_k \frac{\log t}{t^{\min(\alpha_k, 1 - \alpha_k)}}\right)$$

[1] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of heterogeneous distributed learning in stochastic routing games. In *53rd Allerton Conference on Communication, Control and Computing*, 2015

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
000	000	000	

Convergence

Convergence of Distributed Stochastic Mirror Descent

For
$$\eta_t^k = \frac{\theta_k}{t^{\alpha_k}}, \ \alpha_k \in (0, 1),$$
$$\mathbb{E}\left[f(x^{(t)})\right] - f^* = \mathcal{O}\left(\sum_k \frac{\log t}{t^{\min(\alpha_k, 1 - \alpha_k)}}\right)$$

Figure: Example network with 2 populations.

- Centered Gaussian noise on edges.
- Population 1: Hedge with $\eta_t^1 = t^{-.3}$
- Population 2: Hedge with $\eta_t^2 = t^{-.4}$

6/12

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
000	000	000	

Convergence

Convergence of Distributed Stochastic Mirror Descent

For
$$\eta_t^k = \frac{ heta_k}{t^{lpha_k}}, \ lpha_k \in (0, 1),$$
$$\mathbb{E}\left[f(x^{(t)})\right] - f^\star = \mathcal{O}\left(\sum_k \frac{\log t}{t^{\min(lpha_k, 1 - lpha_k)}}\right)$$

Figure: Potential values.

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
000	000	000	

Convergence

Convergence of Distributed Stochastic Mirror Descent

For
$$\eta_t^k = \frac{ heta_k}{t^{lpha_k}}, \ lpha_k \in (0, 1),$$
$$\mathbb{E}\left[f(x^{(t)})\right] - f^\star = \mathcal{O}\left(\sum_k \frac{\log t}{t^{\min(lpha_k, 1 - lpha_k)}}\right)$$

Figure: Potential values.

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
Outline			

Distributed learning model

2 Estimation of Learning Rates

Optimal Control

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
000	●00	000	

A routing experiment

- Interface for the routing game.
- Used to collect sequence of decisions $\bar{x}^{(t)}$.

Figure: Interface for the routing game experiment.

Distributed learning model	Estimation of Learning Rates •00	Optimal Control	References
A routing experi	ment		

- Interface for the routing game.
- Used to collect sequence of decisions $\bar{x}^{(t)}$.

Figure: Interface for the routing game experiment.

arning Rates Optimal Control	References
000	
	oco

Estimation of learning dynamics

- We observe a sequence of player decisions $(\bar{x}^{(t)})$ and losses $(\bar{\ell}^{(t)})$.
- Can we fit a model of player dynamics?

Mirror descent model

Estimate the learning rate in the mirror descent model

$$x^{(t+1)}(\eta) = \arg\min_{x \in \Delta^{\mathcal{A}_k}} \left\langle \bar{\ell}^{(t)}, x \right\rangle + \frac{1}{\eta} D_{\mathsf{KL}}(x, \bar{x}^{(t)})$$

Then $d(\eta) = D_{KL}(\bar{x}^{(t+1)}, x^{(t+1)}(\eta))$ is a convex function. Can minimize it to estimate $\eta_k^{(t)}$.

[2]Kiet Lam, Walid Krichene, and Alexandre M. Bayen. Estimation of learning dynamics in the routing game.

In International Conference on Cyber-Physical Systems (ICCPS), in review., 201

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
000	000	000	

Estimation of learning dynamics

- We observe a sequence of player decisions $(\bar{x}^{(t)})$ and losses $(\bar{\ell}^{(t)})$.
- Can we fit a model of player dynamics?

Mirror descent model

Estimate the learning rate in the mirror descent model

$$x^{(t+1)}(\eta) = rgmin_{x\in\Delta^{\mathcal{A}_k}} \left\langle ar{\ell}^{(t)}, x
ight
angle + rac{1}{\eta} \mathcal{D}_{ extsf{KL}}(x,ar{x}^{(t)})$$

Then $d(\eta) = D_{KL}(\bar{x}^{(t+1)}, x^{(t+1)}(\eta))$ is a convex function. Can minimize it to estimate $\eta_k^{(t)}$.

[2]Kiet Lam, Walid Krichene, and Alexandre M. Bayen. Estimation of learning dynamics in the routing game.

In International Conference on Cyber-Physical Systems (ICCPS), in review., 2019

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
000	000	000	

Estimation of learning dynamics

- We observe a sequence of player decisions $(\bar{x}^{(t)})$ and losses $(\bar{\ell}^{(t)})$.
- Can we fit a model of player dynamics?

Mirror descent model

Estimate the learning rate in the mirror descent model

$$x^{(t+1)}(\eta) = rgmin_{x\in\Delta^{\mathcal{A}_k}} \left\langle ar{\ell}^{(t)}, x
ight
angle + rac{1}{\eta} \mathcal{D}_{\mathcal{KL}}(x,ar{x}^{(t)})$$

Then $d(\eta) = D_{KL}(\bar{x}^{(t+1)}, x^{(t+1)}(\eta))$ is a convex function. Can minimize it to estimate $\eta_k^{(t)}$.

[2]Kiet Lam, Walid Krichene, and Alexandre M. Bayen. Estimation of learning dynamics in the routing game.

In International Conference on Cyber-Physical Systems (ICCPS), in review., 2015

Game iteration Figure: Costs of each player (normalized by the equilibrium cost)

15

20

25

30

1.0 0.9

5

10

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
Preliminary results			

Figure: Potential function $f(x^{(t)}) - f^*$.

Distributed learning model	Estimation of Learning Rates	Optimal Control 000	References
Outline			

Distributed learning model

2 Estimation of Learning Rates

Optimal Control

Distributed learning model	Estimation of Learning Rates	Optimal Control ●○○	References
Optimal routing v	vith learning dynamics		
Assumptions A central autho Remaining traff	rity has control over a fractio c follows learning dynamics:	on of traffic: $u^{(t)}$	
Optimal routing und	er selfish learning constraints		

$minimize_{u^{(1:T)},x^{(1:T)}}$	$\sum_{t=1}^{T} J(x^{(t)}, \boldsymbol{u}^{(t)})$
subject to	$x^{(t+1)} = u(x^{(t)} + u^{(t)}, \ell(x^{(t)} + u^{(t)}))$

Solution methods:

- Greedy method: Approximate the problem with a sequence of convex problems.
- Mirror descent with the adjoint method.

Distributed learning model	Estimation of Learning Rates	Optimal Control ●○○	References
Optimal routing wi	th learning dynamics		
Assumptions A central authorit Remaining traffic	y has control over a fraction follows learning dynamics:	n of traffic: $u^{(t)}$	

Optimal routing under selfish learning constraints

$minimize_{u^{(1:\mathcal{T})},x^{(1:\mathcal{T})}}$	$\sum_{t=1}^{T} J(x^{(t)}, \boldsymbol{u}^{(t)})$
subject to	$x^{(t+1)} = u(x^{(t)} + u^{(t)}, \ell(x^{(t)} + u^{(t)}))$

Solution methods:

- Greedy method: Approximate the problem with a sequence of convex problems.
- Mirror descent with the adjoint method.

Distributed learning model	Estimation of Learning Rates	Optimal Control	References
000	000	000	

Application to the L.A. highway network

- Simplified model of the L.A. highway network.
- Cost functions uses the B.P.R. function, calibrated using the work of [4].

Figure: Los Angeles highway network.

[4]J. Thai, R. Hariss, and A. Bayen. A multi-convex approach to latency inference and control in traffic equilibria from sparse data. In American Control Conference (ACC), 2015, pages 689–695, July 2015

Figure: Average delay without control (dashed), with full control (solid), and different values of α .

[3]Milena Suarez, Walid Krichene, and Alexandre Bayen. On optimal routing under selfish learning dynamics.

Transactions on Control of Network Systems, in review, 2015

Distributed learning model	Estimation of Learning Rates	Optimal Control ○○●	References
Summary and o	ngoing work		

- A model of online learning as coupled sequential decision problems.
- Design / analysis of learning dynamics using stochastic optimization.
- Estimation of player dynamics, optimal control under learning.
- Can be applied to model predictive control.

Thank you!

eecs.berkeley.edu/~walid/

Distributed learning model	Estimation of Learning Rates	Optimal Control ○○●	References
Summary and o	ngoing work		

- A model of online learning as coupled sequential decision problems.
- Design / analysis of learning dynamics using stochastic optimization.
- Estimation of player dynamics, optimal control under learning.
- Can be applied to model predictive control.

Thank you!

eecs.berkeley.edu/~walid/

Distributed learning model	Estimation of Learning Rates	Optimal Control 000	References
Deferment			

- References I
- Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of heterogeneous distributed learning in stochastic routing games. In 53rd Allerton Conference on Communication, Control and Computing, 2015.
- [2] Kiet Lam, Walid Krichene, and Alexandre M. Bayen. Estimation of learning dynamics in the routing game. In *International Conference on Cyber-Physical Systems (ICCPS), in review.*, 2015.
- [3] Milena Suarez, Walid Krichene, and Alexandre Bayen. On optimal routing under selfish learning dynamics. *Transactions on Control of Network Systems, in review*, 2015.
- [4] J. Thai, R. Hariss, and A. Bayen. A multi-convex approach to latency inference and control in traffic equilibria from sparse data. In *American Control Conference (ACC), 2015*, pages 689–695, July 2015.

