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Learning dynamics in the routing game

@ Routing games model congestion on networks.
@ Nash equilibrium quantifies efficiency of network in steady state.
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Learning dynamics in the routing game

@ Routing games model congestion on networks.
@ Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to
understand decision dynamics (learning).
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Learning dynamics in the routing game

@ Routing games model congestion on networks.
@ Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to

understand decision dynamics (learning).
o A realistic model for decision dynamics is ess
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Learning dynamics should be

@ Realistic in terms of information requirements, computational complexity.
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Learning dynamics should be
@ Realistic in terms of information requirements, computational complexity.

@ Consistent with the full information Nash equilibrium.

x5 x*
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Learning dynamics should be
@ Realistic in terms of information requirements, computational complexity.

@ Consistent with the full information Nash equilibrium.

x5 x*

@ Robust to stochastic perturbations, e.g. observation noise.
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o Player drives from source tm

o Chooses path from Ay

@ Mass of players on each edge determines cost on that edge.

Figure: Routing game
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o Chooses path from Ay

@ Mass of players on each edge determines cost on that edge.

Figure: Routing game
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Online Learning Model

; forFfle N do ®
: ay pr~ Xy,
3: Discover Z(Af)k
4: Update XST) = ug (Xfi)k,l(j‘)k
5: end for

xﬁ)l e At Discover ng\)l
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Online Learning Model

1: for t € N do

2:
3:
4:

Play p ~ x4 ()

Discover Z(t)

Update x4

5: end for

(t+1)_ (1) (1)
A Uk (XAk’eAk

(t) A
Xy €A™

t
Sample p ~ X4y

Of

Discover ng\)l
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Online learning in the routing game

Online Learning Model

1: for t € N do
2: Play p ~ xx)k

3: Discover Z(j\)
k
4: Update xfjtl) = Uk (Xfi)k’é(jt)k)

5: end for
xf‘?l e At Sample p: Xfi)l Discover ZS‘)!,,, Update xfﬂ'l) ,

s

Define class of dynamics C such that

u € C Yk = x® - x*
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Stochastic convex optimization

Idea:
@ The set of Nash equilibria is arg min ., f(x) (the Rosenthal potential).

o View the learning dynamics as a distributed algorithm to minimize 7.

Algorithm 1 MD Method
1: for t € Ndo
2. observe /() € 9f (x")
. (t+1) _ ; (t) 1 ()
3t X = arg min <Z ,x>+ o Dy (x, )

4: end for

@ 7. learning rate

e D,: Bregman divergence

S
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Stochastic convex optimization

Idea:
@ The set of Nash equilibria is arg min ., f(x) (the Rosenthal potential).

o View the learning dynamics as a distributed algorithm to minimize f.

Algorithm 2 MD Method

1: for t € N do
2. observe Zg)k € 9, f(x1)

3: Xﬁ:rl) = arg mi2 <€Efl)k,x> + n%kDW (X,xﬁi)
Ak

xEX
4: end for
— f(@)
X - f@®) + (00 x — 2®)
o 7;: learning rate @) + (60,5 — 20) + LDy (,2)

e Dy: Bregman divergence

S
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Stochastic convex optimization

Idea:
@ The set of Nash equilibria is arg min, , f(x) (the Rosenthal potential).

o View the learning dynamics as a distributed algorithm to minimize f.

Algorithm 2 SMD Method

1: for t € N.do
2:  observe /g)k with E [[ﬁ(;uftfl} € da, f(x1)

(t+1) _ : A(t) 1 (1)
3 Xy, = argxgj‘iﬂk <(Ak,X> + ﬁka(X»XAk)
4. end for
— f(2)
--- f(1‘<f))+<é'(f),1;71;(')>
@ 7 learning rate — fED) + (0D, z — 2 ) + LDy, 20)

e D,: Bregman divergence

S
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Convergence

For 771“( = %7 Qi € (07 1)1

. |
E[f(?)] - =0 Xk:m%giak)

[1] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
heterogeneous distributed learning in stochastic routing games.
In 53rd Allerton Conference on Communication, Control and Computing, 2015
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Convergence

For nk = :Tkk» ax € (0,1),

* logt
e 1)) - =0 (3 iy )

Figure: Example network with 2 populations.

@ Centered Gaussian noise on edges.
o Population 1: Hedge with nf = t=3
e Population 2: Hedge with n? = t~*
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Convergence

For nk = tﬂ—“k, ax € (0,1),

* log ¢
E[f(x(t))]_f =0 Xk:ﬁ

1072

10-6 . Lo . I
10!

—
=)
>

T

Figure: Potential values.
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Convergence

For nk = tﬂ—“k, ax € (0,1),

* log ¢
E[f(x(t))]_f =0 Xk:ﬁ
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Figure: Potential values.
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A routing experiment

@ Interface for the routing game.
o Used to collect sequence of decisions x(*).

Path  Previous cost  Cumulative cost  Weight ) CurmontFows  Provious Flows
Patho 0911 17.021 @ o407 o407
Patn1 0915 20056 0098 0008
Path2 0922 20356 & 0114 0114
Patha 0927 20198 h 0102 0102
Patha 0916 19,656 & 0.134 0134
0
Path5 0910 19.696 [ 0.146 0.146

Show odgo costs | loar dgo costs

Gumuativo Cost Provious Flows

v
o Wi Wz W3 me WS o Wi mzmIma WS mo w1 W2 W3 W4 WS

Figure: Interface for the routing game experiment.

References



o Interface for the routing game.
o Used to collect sequence of decisions x(*). ———

@87

@65

l t
B B 0 [0
& O Server bf

G an)

Figure: Interface for the routing game experiment.
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o We observe a sequence of player decisions (x(*)) and losses (#*)).
o Can we fit a model of player dynamics?
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o We observe a sequence of player decisions (x(*)) and losses (#*)).
o Can we fit a model of player dynamics?

Estimate the learning rate in the mirror descent model

X(H'l)(n) = arg min <l7(t), x> + lDKL(x,f((t))
XGA'Ak n
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o We observe a sequence of player decisions (x(*)) and losses (#*)).
o Can we fit a model of player dynamics?

Estimate the learning rate in the mirror descent model

X(H'l)(n) = arg min <l7(t), x> + lDKL(X,)'((t))
XGA'Ak n

Then d(1) = Dk (X, x5 (1)) is a convex function. Can minimize it to
estimate 7, .

[2]Kiet Lam, Walid Krichene, and Alexandre M. Bayen. Estimation of learning dynamics in the
routing game.

In International Conference on Cyber-Physical Systems (ICCPS), in review., 2015 8/12

(:;) FORCES

FOUNDATIONS OF RESILIENT
GYBER-PHYSICAL SYSTEMS



~ - Player1 |

T
|
L L7 ] E X : — Player 2
:{ 1.6 , xploration i Convergence Player 3
S 15 o -~ Player4 |
: M N Player 5
V! 1

Normalized cost?

Game iteration

Figure: Costs of each player (normalized by the equilibrium cost)
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25 : —_— : :
1 e—e f(al) — f(a¥)
2ur : —  f(2®) - f(«*) minimum |
1
~ 23y Exploration : Convergence T
B
= 22 i E
| 1
= a1} | !
= |
=~ 20} | b
19} ,
1
18 : s : :
0 5 10 15 20 25 30

Game iteration

Figure: Potential function f(x(t)) — £*.
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—  Parameterized ,;
—— Previous 7,
Moving average 7,

1.0

Linear regression 1,

Average Bregman divergence

Prediction horizon h

Figure: Average KL divergence between predicted distributions and actual
distributions, as a function of the prediction horizon h.

9/12

(:,3 FORCES

FOUNDATIONS OF RESILIENT
GYBER-PHYSICAL SYSTEMS



.‘
@ Distributed learning model
© Estimation of Learning Rates

© Optimal Control

9/12

g-) FORCES

FOUNDATIONS OF RESILIENT
cve s




.

o A central authority has control over a fraction of traffic: u(*)

Assumptions

o Remaining traffic follows learning dynamics: x(*)

-
minimize,,.7) (1.7 Z J(x(t), u(t))

=1
subject to X = (x4 4D (x4 uy)
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o A central authority has control over a fraction of traffic: u(*)

Assumptions

o Remaining traffic follows learning dynamics: x(*)

-
minimize,,.7) (1.7 Z J(x(t), u(t))

=1
subject to XD = (x4 4O g(x® 4 4, Oy)

Solution methods:

o Greedy method: Approximate the problem with a sequence of convex
problems.

@ Mirror descent with the adjoint method.
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Figure: Los Angeles highway network.

[4]J. Thai, R. Hariss, and A. Bayen. A multi-convex approach to latency inference and control
in traffic equilibria from sparse data.

In American Control Conference (ACC), 2015, pages 689-695, July 2015
S FOREES
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Figure: Average delay without control (dashed), with full control (solid), and different
values of a.

[3]Milena Suarez, Walid Krichene, and Alexandre Bayen. On optimal routing under selfish
learning dynamics.
Transactions on Control of Network Systems, in review, 2015 11/12
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@ A model of online learning as coupled sequential decision problems.
@ Design / analysis of learning dynamics using stochastic optimization.

o Estimation of player dynamics, optimal control under learning.
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@ A model of online learning as coupled sequential decision problems.
@ Design / analysis of learning dynamics using stochastic optimization.
o Estimation of player dynamics, optimal control under learning.

@ Can be applied to model predictive control.

Thank you!

eecs.berkeley.edu/~walid/
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