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Learning dynamics in the routing game

Routing games model congestion on networks.
Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to
understand decision dynamics (learning).

A realistic model for decision dynamics is essential for prediction, control.
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Desiderata

Learning dynamics should be

Realistic in terms of information requirements, computational complexity.

Consistent with the full information Nash equilibrium.

x (t) → X ?

Robust to stochastic perturbations, e.g. observation noise.
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1 Distributed learning model

2 Estimation of Learning Rates
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Online learning in the routing game

Player drives from source to destination node

Chooses path from Ak

Mass of players on each edge determines cost on that edge.
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Figure: Routing game
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Online learning in the routing game

Online Learning Model
1: for t ∈ N do
2: Play p ∼ x

(t)
Ak

3: Discover `(t)
Ak

4: Update x
(t+1)
Ak

= uk
(
x

(t)
Ak
, `

(t)
Ak

)
5: end for

x
(t)
A1
∈ ∆A1 Sample p ∼ x

(t)
A1

Discover `(t)
A1

Update x
(t+1)
A1

Main problem

Define class of dynamics C such that

uk ∈ C ∀k ⇒ x (t) → X?
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Stochastic convex optimization

Idea:

The set of Nash equilibria is argminx∈X f (x) (the Rosenthal potential).

View the learning dynamics as a distributed algorithm to minimize f .

Algorithm 1 MD Method
1: for t ∈ N do
2: observe `(t) ∈ ∂f (x (t))

3: x (t+1) = arg min
x∈X

〈
`(t), x

〉
+ 1

ηt
Dψ(x , x (t))

4: end for

ηt : learning rate

Dψ: Bregman divergence

f(x(t))
f(x(t+1))

f(x)

f(x(t)) + 〈`(t), x− x(t)〉
f(x(t)) + 〈`(t), x− x(t)〉+ 1

ηt
Dψ(x, x

(t))
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Convergence

Convergence of Distributed Stochastic Mirror Descent

For ηkt = θk
tαk , αk ∈ (0, 1),

E
[
f (x (t))

]
− f ? = O

(∑
k

log t
tmin(αk ,1−αk )

)

[1] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
heterogeneous distributed learning in stochastic routing games.
In 53rd Allerton Conference on Communication, Control and Computing, 2015
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Figure: Example network with 2 populations.

Centered Gaussian noise on edges.
Population 1: Hedge with η1

t = t−.3

Population 2: Hedge with η2
t = t−.4
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A routing experiment

Interface for the routing game.
Used to collect sequence of decisions x̄ (t).

Figure: Interface for the routing game experiment.
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Estimation of learning dynamics

We observe a sequence of player decisions (x̄ (t)) and losses (¯̀(t)).

Can we fit a model of player dynamics?

Mirror descent model

Estimate the learning rate in the mirror descent model

x (t+1)(η) = argmin
x∈∆Ak

〈
¯̀(t), x

〉
+

1
η
DKL(x , x̄ (t))

Then d(η) = DKL(x̄ (t+1), x (t+1)(η)) is a convex function. Can minimize it to
estimate η(t)

k .

[2]Kiet Lam, Walid Krichene, and Alexandre M. Bayen. Estimation of learning dynamics in the
routing game.
In International Conference on Cyber-Physical Systems (ICCPS), in review., 2015
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Preliminary results
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Figure: Costs of each player (normalized by the equilibrium cost)
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Preliminary results
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Figure: Average KL divergence between predicted distributions and actual
distributions, as a function of the prediction horizon h.
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Optimal routing with learning dynamics

Assumptions

A central authority has control over a fraction of traffic: u(t)

Remaining traffic follows learning dynamics: x (t)

Optimal routing under selfish learning constraints

minimizeu(1:T ),x(1:T )

T∑
t=1

J(x (t), u(t))

subject to x (t+1) = u(x (t) + u(t), `(x (t) + u(t)))

Solution methods:

Greedy method: Approximate the problem with a sequence of convex
problems.

Mirror descent with the adjoint method.
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Application to the L.A. highway network

Simplified model of the L.A. highway network.
Cost functions uses the B.P.R. function, calibrated using the work of [4].

Figure: Los Angeles highway network.

[4]J. Thai, R. Hariss, and A. Bayen. A multi-convex approach to latency inference and control
in traffic equilibria from sparse data.
In American Control Conference (ACC), 2015, pages 689–695, July 2015
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Figure: Average delay without control (dashed), with full control (solid), and different
values of α.

[3]Milena Suarez, Walid Krichene, and Alexandre Bayen. On optimal routing under selfish
learning dynamics.
Transactions on Control of Network Systems, in review, 2015
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Summary and ongoing work

A model of online learning as coupled sequential decision problems.

Design / analysis of learning dynamics using stochastic optimization.

Estimation of player dynamics, optimal control under learning.

Can be applied to model predictive control.

Thank you!

eecs.berkeley.edu/∼walid/
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