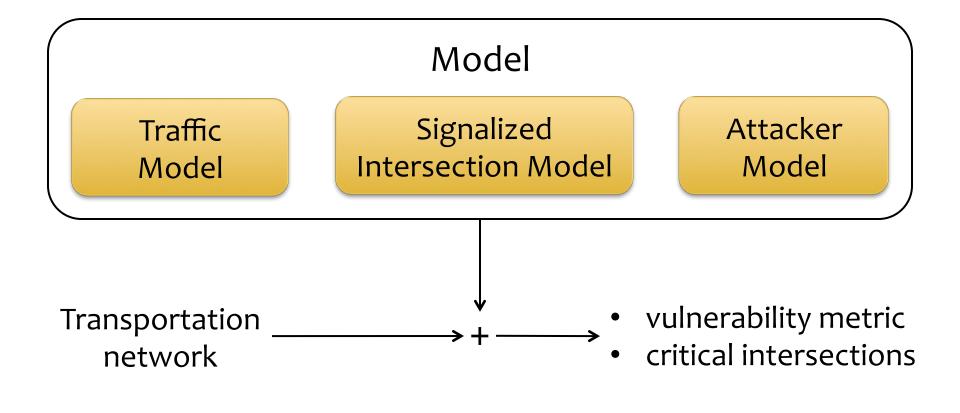


Vulnerability of Transportation Networks to Traffic-Signal Tampering

Aron Laszka¹

in collaboration with Bradley Potteiger², Yevgeniy Vorobeychik², Saurabh Amin³, and Xenofon Koutsoukos²

¹UC Berkeley ²Vanderbilt University ³MIT


Traffic Signals

- * In the beginning...
 - standalone hardware devices running on fixed schedules
 - vulnerable only to attacks based on direct physical access
- * Nowadays
 - networked devices controlled by software solutions
 - vulnerable to attacks through wireless interfaces or even the Internet
 - hardware-based failsafes prevent unsafe configurations, but an attack may cause disastrous traffic congestions

Evaluating the Vulnerability of Transportation Networks

Traffic and Signalized Intersection Models

- * Traffic model: Daganzo's cell transmission model
 - well-known and simple approach for modeling traffic flow consistent with the hydrodynamic model
 - discrete: time is divided into intervals, while roads are divided into cells (i.e., road segments)
 - traffic flow is limited by the capacity and the congestion level of the successor cell
- * Signalized intersections
 - modeled using cells with multiple predecessors
 - traffic signal schedule: defines the inflow proportions of the cell

Attacker Model

* Action space

- <u>budget limit *B*</u>: the attacker can compromise at most *B* intersections
- <u>tampering</u>: the attacker can change the schedule (i.e., inflow proportions) of the compromised intersections
- <u>failsafes</u>: the attacker can select only valid schedules (i.e., the inflow proportions must add up to one)
- * Goal
 - <u>worst-case</u>: the attacker minimizes the network's utility by maximizing its congestion
- * We measure congestion as the total travel time of the vehicles

Vulnerability and Critical Intersections

* Vulnerability of a transportations network:

$$\frac{T(\mathcal{A}) - T}{T}$$

- *T*: total travel time without attack
- $T(\mathcal{A})$: total travel time resulting from the worst-case attack
- * Critical intersections:
 - an intersection is *critical* if it is an element of a worst-case attack

Computational Complexity

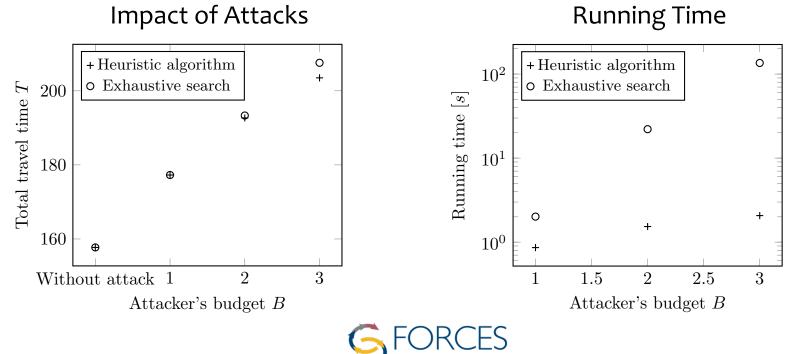
Given a transportation network, an attacker budget B, and a threshold travel time T^* , determining if there exists an attack \mathcal{A} satisfying the budget constraint such that $T(\mathcal{A}) > T^*$ is **NP-hard**.

 Consequently, we cannot hope to find polynomial-time algorithms for evaluating the vulnerability of a transportation networks against signal-tampering attacks

Heuristic Algorithm

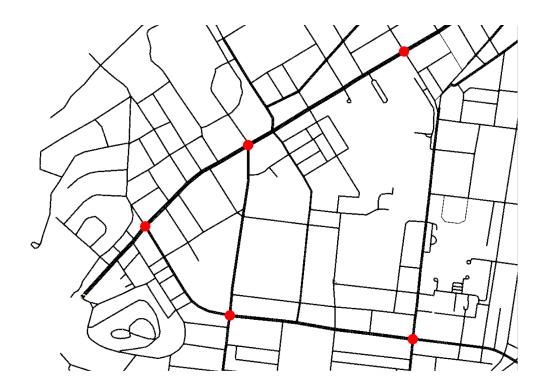
- Selecting the set of intersections to attack: greedy algorithm
- Choosing a schedule
 for each selected
 intersection:
 iterate over extreme
 configurations

Algorithm 1 Polynomial-Time Heuristic Algorithm for Finding an Attack


 $\begin{array}{l} \mathcal{A} \leftarrow (\emptyset, \emptyset) \\ \textbf{for } b = 1, \dots, B \ \textbf{do} \\ \textbf{for } s \in \mathcal{S} \ \textbf{do} \\ \textbf{for } k \in \Gamma^{-1}(s) \ \textbf{do} \\ \mathcal{A}' \leftarrow \mathcal{A} \cup (\{s\}, \{\hat{p}_{ks} = 1, \forall j \neq k : \hat{p}_{js} = 0\}) \\ \textbf{if } T(\mathcal{A}') \geq T(\mathcal{A}^*) \ \textbf{then} \\ \mathcal{A}^* \leftarrow \mathcal{A}' \\ \textbf{end if} \\ \textbf{end if} \\ \textbf{end for} \\ \mathcal{A} \leftarrow \mathcal{A}^* \\ \textbf{end for} \\ \textbf{Output } \mathcal{A} \end{array}$

Numerical Results

* Grid model with Random Edges (GRE)


- 250 random networks resembling real-world road networks
- performed an exhaustive search and the proposed heuristic on each

BER-PHYSICAL SYSTEMS


Micro-Model Based Simulations

- * SUMO simulator
 - widely-used microscopic traffic simulator
- * Transportation network
 - Vanderbilt campus
 - from OpenStreetMap
- * Traffic scenarios
 - morning commute
 - midday
 - afternoon commute
 - nighttime

Simulation Results

Conclusion & Future Work

- We proposed an approach and algorithm for evaluating the vulnerability of transportation networks
- * We evaluated our approach and algorithm using a large number of random networks and a real-world road netwok
- * Future work
 - configuring traffic signals in a resilient way, so that travel time remains low even if some of the signals are compromised
 - characterizing what makes a traffic signal an attractive target using graph-theoretic metrics, characteristics of the traffic flowing through the intersection, and centrality metrics

Thank you for your attention!

Questions?

