Network Routing under Strategic Link Disruptions

Mathieu Dahan Saurabh Amin

Massachusetts Institute of Technology

NSF FORCES Annual Meeting, Washington DC, November 4, 2015

Motivation and Problem Formulation

Network routing in the face of disruptions

Network flow routing

- Max-flow problem [Fulkerson '56]
- Max-flow min-cut theorem [Fulkerson '56]
- Max-flow with minimum transportation cost [Edmonds and Karp '72]

Network vulnerability

- Sequential games: network interdiction [Washburn '95]
- Simultaneous games [Wooders '10], [Gueye '12]
- Vulnerability indices [Gueye '12]

(Q): Network routing when the operator faces strategic link disruptions ?

Recall: Max-flow (Min-cost) problem

Max-flow problem

Max-flow with min-transportation cost

- (\mathcal{P}_1) : maximize F(x) (\mathcal{P}_2) : minimize $C_1(x)$
 - subject to $x \in \mathcal{F}$, subject to $x \in \mathcal{F}$ $\mathsf{F}(x) > \mathsf{F}(x'), \quad \forall x' \in \mathcal{F},$
- C₁(x) : Cost of transporting flow x • F(x) : Value of flow x
- **Max-flow min-cut theorem**: the maximum value of an s t flow is equal to

the minimum capacity over all s - t cuts.

(Q): Network routing when the operator faces strategic link disruptions ?

- We formulate a simultaneous non-zero sum game
 - Both transportation and attack costs
 - Attacker simultaneously disrupts multiple edges
 - Defender strategically chooses a flow but no re-routing after attack.
- Main contributions
 - Structural insights on the set of Nash equilibria
 - Relation to classical network routing problems
 - Network vulnerability under strategic attacks

Game

$$\mathsf{\Gamma} := \langle \{\mathsf{1}, \mathsf{2}\}, (\mathcal{F}, \mathcal{A}), (u_1, u_2) \rangle$$

- Directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, and for every $(i, j) \in \mathcal{E}$:
 - Edge capacity c_{ij}.
 - Edge transportation cost *b_{ij}*.
- Player 1 (Defender) chooses a feasible flow $x \in \mathcal{F}$.
- Player 2 (Attacker) chooses the edges to disrupt through an attack $\mu \in A$.

$$\forall (i,j) \in \mathcal{E}, \ \mu_{ij} = \left\{ egin{array}{cc} 1 & ext{if } (i,j) ext{ is disrupted,} \\ 0 & ext{otherwise.} \end{array}
ight.$$

• 1 single s - t pair.

• Given a flow x and an attack μ , x^{μ} is the **effective flow**.

Initial flow and attack.

Resulting effective flow

Payoffs

$$\Gamma := \langle \{1,2\}, (\mathcal{F},\mathcal{A}), (u_1,u_2) \rangle$$

•
$$u_1(x,\mu) = p_1 F(x^{\mu}) - C_1(x)$$

• $u_2(x,\mu) = p_2 F(x-x^{\mu}) - C_2(\mu)$

where:

- $F(x^{\mu}) = \sum_{\{i \mid (i,t) \in \mathcal{E}\}} x_{it}^{\mu}$ is the amount of effective flow.
- $C_1(x) = \sum_{(i,j)\in\mathcal{E}} b_{ij} x_{ij}$ is the transportation cost.

-
$$C_2(\mu) = \sum_{(i,j)\in\mathcal{E}} c_{ij}\mu_{ij}$$
 is the attacking cost.

- $F(x - x^{\mu}) = F(x) - F(x^{\mu})$ is the amount of lost flow.

• Mixed-extension: for $(\sigma^1, \sigma^2) \in \Delta(\mathcal{F}) \times \Delta(\mathcal{A})$:

$$U_1(\sigma^1,\sigma^2) = \mathbb{E}[u_1(x,\mu)], \qquad U_2(\sigma^1,\sigma^2) = \mathbb{E}[u_2(x,\mu)]$$

• S_{Γ} is the set of Nash Equilibria.

Example

 $\forall (i,j) \in \mathcal{E}, \ b_{ij} = 1.$

Initial flow and attack.

Resulting effective flow

• $u_1(x,\mu) = p_1 - 7$ • $u_2(x,\mu) = 2p_2 - 2.$

What properties does S_{Γ} satisfy?

Assumption 1

There exists a max-flow with min-transp. cost x^* that only takes s - t paths that induce the lowest marginal transportation cost, denoted α .

- Simplifying assumption without any loss of generality.
- α plays an important role in the results.

Regimes

<i>p</i> ₂	(pure NE) I supp $(\sigma^{1^*}) = \{x^0\}$	$\begin{split} & supp(\sigma^{1^*}) = \{x^0, x^*\} \\ & supp(\sigma^{2^*}) = \{\mu^0, \mu^{\min}\} \end{split}$	III	(mixed NE)
1 -	$supp(\sigma^{2^*}) = \{\mu^0\}$	$ ext{supp}({\sigma^1}^*) = \{x^*\}$ $ ext{supp}({\sigma^2}^*) = \{\mu^0\}$	II	- (pure NE)
0) (Y	Å	→ ⊃1

Proposition (Regime III)

If $p_1 > \alpha$ and $p_2 > 1$, then Γ has no pure NE. Furthermore, $\exists \sigma_0 = (\sigma_0^1, \sigma_0^2) \in S_{\Gamma}$ such that $U_1(\sigma_0^1, \sigma_0^2) = U_2(\sigma_0^1, \sigma_0^2) = 0$. σ_0 is defined by: • $\sigma_{x^0}^1 = 1 - \frac{1}{p_2}$, $\sigma_{x^*}^1 = \frac{1}{p_2}$, • $\sigma_{\mu^0}^2 = \frac{\alpha}{p_1}$, $\sigma_{\mu^{min}}^2 = 1 - \frac{\alpha}{p_1}$

Illustration of the Regimes

Example: Every path induces the same transportation cost

Probability bounds

Consider $(\sigma^{1^*}, \sigma^{2^*}) \in S_{\Gamma}$. Then we have the following bounds: • Player 1:

• If
$$x^0 \in \text{supp}(\sigma^{1^*})$$
, then $\sigma_{x^0}^{1^*} \le 1 - \frac{1}{p}$
• If $x^* \in \text{supp}(\sigma^{1^*})$, then $\sigma_{x^*}^{1^*} \le \frac{1}{p_2}$

Player 2:

• If
$$\mu^{\min} \in \operatorname{supp}(\sigma^{2^*})$$
, then $\sigma_{\mu^{\min}}^{2^*} \leq 1 - \frac{\alpha}{p_1}$
• If $\mu^0 \in \operatorname{supp}(\sigma^{2^*})$, then $\sigma_{\mu^0}^{2^*} \leq \frac{\alpha}{p_1}$

• Remark: (σ_0^1, σ_0^2) proves that these bounds are tight.

Attacker strategy σ^{2^*} and (\mathcal{P}_2)

For any NE (σ^{1*}, σ^{2*}), any μ in the support of σ^{2*} disrupts edges that are saturated by every max-flow with minimum transportation cost.

$$\forall (\sigma^{1^*}, \sigma^{2^*}) \in \mathcal{S}_{\Gamma}, \ \forall \mu \in \text{supp}(\sigma^{2^*}), \ \forall (i, j) \in \mathcal{E}, \ \mu_{ij} = 1 \Longrightarrow \forall x^* \in \Omega_2, \ x_{ij}^* = c_{ij}$$

Example: every path induces the same transportation cost.

Defender strategy σ^{1*} and min-cuts

For every NE (σ^{1*}, σ^{2*}), any edge of any min-cut must be taken by at least one flow *x* in the support of σ^{1*} .

$$orall (\sigma^{1^*}, \sigma^{2^*}) \in \mathcal{S}_{\Gamma}, \forall \text{ min-cut } E(\{S, T\}), \forall (i, j) \in E(\{S, T\}), \ \exists x \in \operatorname{supp}(\sigma^{1^*}) \mid x_{ij} > 0$$

Example:

Main results

 $\Theta_1 = F(x^*)$: Optimal value of the max-flow problem.

 $\Theta_2 = C_1(x^*)$: Optimal value of the max-flow min-cost problem.

Theorem (Regime III)

If $p_1 > \alpha$, $p_2 > 1$, and under Assumption 1, then for any $\sigma^* \in S_{\Gamma}$:

Both players' equilibrium payoffs are equal to 0, i.e.:

$$U_1(\sigma^{1^*}, \sigma^{2^*}) \equiv 0$$
$$U_2(\sigma^{1^*}, \sigma^{2^*}) \equiv 0$$

The expected amount of flow sent in the network is given by:

$$\mathbb{E}_{\sigma^*}\left[\mathsf{F}\left(x\right)\right] \equiv \frac{1}{p_2}\Theta_1$$

and the expected transportation cost is given by:

$$\mathbb{E}_{\sigma^*}\left[\mathsf{C}_1(x)\right] \equiv \frac{1}{p_2} \Theta_2$$

Main results

 $\Theta_1 = F(x^*)$: Optimal value of the max-flow problem.

 $\Theta_2 = C_1(x^*)$: Optimal value of the max-flow min-cost problem.

Theorem (Regime III)

The expected cost of attack is given by:

$$\mathbb{E}_{\sigma^{*}}\left[\mathsf{C}_{2}\left(\mu\right)\right] \equiv \Theta_{1} - \frac{1}{p_{1}}\Theta_{2} = \left(1 - \frac{\alpha}{p_{1}}\right)\Theta_{1}$$

The expected amount of effective flow (that reaches t) is given by:

$$\mathbb{E}_{\sigma^*}\left[\mathsf{F}\left(x^{\mu}\right)\right] \equiv \frac{1}{p_1 p_2} \Theta_2$$

The yield is given by:

$$\frac{\mathbb{E}_{\sigma^{*}}\left[\mathsf{F}\left(x^{\mu}\right)\right]}{\mathbb{E}_{\sigma^{*}}\left[\mathsf{F}\left(x\right)\right]} \equiv \frac{\Theta_{2}}{p_{1}\Theta_{1}}$$

• \mathbb{E}_{σ^*} [F (x^{μ})] decreases with p_1 and p_2 !

Expected amount of edge flow in min-cuts

Consider a min-cut $E(\{S, T\})$, then:

$$\forall (\sigma^{1^*}, \sigma^{2^*}) \in \mathcal{S}_{\Gamma}, \ \forall (i, j) \in \boldsymbol{E}(\{\boldsymbol{S}, T\}), \ \mathbb{E}_{\sigma^*}[\boldsymbol{x}_{ij}] = \frac{c_{ij}}{p_2}$$

Probability of edge disruption in min-cuts

For any NE whose support only contains attacks that disrupt edges of a single min-cut $E({S, T})$, we have:

$$\forall (i,j) \in E(\{S,T\}), \mathbb{P}((i,j) \text{ is disrupted}) = 1 - \frac{\alpha}{p_1}$$

Consider $\sigma^* = ({\sigma^1}^*, {\sigma^2}^*) \in \mathcal{S}_{\Gamma}$

Consider $\sigma^* = ({\sigma^1}^*, {\sigma^2}^*) \in \mathcal{S}_{\Gamma}$

Consider
$$\sigma^* = ({\sigma^1}^*, {\sigma^2}^*) \in \mathcal{S}_{\Gamma}$$

Consider $\sigma^* = ({\sigma^1}^*, {\sigma^2}^*) \in \mathcal{S}_{\Gamma}$

Consider
$$\sigma^* = ({\sigma^1}^*, {\sigma^2}^*) \in \mathcal{S}_{\Gamma}$$

Relaxing Assumption 1

 $3 < p_1 < 4$ and $p_2 > 1$.

•
$$\sigma^* = (\sigma^{1^*}, \sigma^{2^*})$$
 is a NE.

November 4, 2015 20 / 23

Results

- Modeled a simultaneous non-zero sum network game
- Obtained structural insights on the NE
- Related the NE to max-flow min-cost and min-cut
- Determined the vulnerability of a graph under strategic attack

Ongoing

- Nash equilibria of the one-stage game within the class of mixed strategies under link disruptions caused due to either reliability or security failures
- Equilibria for the finitely or infinitely repeated game

FORCES (Foundations Of Resilient Cyber-Physical Systems) NSF CAREER award

Thank you!

Questions: mdahan@mit.edu, amins@mit.edu

Dahan, Amin (MIT)

Sunghoon Hong and Myrna Wooders (2010) Strategic Network Interdiction

Ford, L. R., D. R. Fulkerson (1956)

Maximal flow through a network

Assane Gueye and Vladimir Marbukh (2012)

A Game-Theoretic Framework for Network Security Vulnerability Assessment and Mitigation

Alan Washburn and Kevin Wood (2010)

Two-Person Zero-Sum Games for Network Interdiction

Jack Edmonds and Richard M. Karp (1972)

Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems