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Network routing in the face of disruptions

1 Network flow routing
Max-flow problem [Fulkerson ’56]
Max-flow min-cut theorem [Fulkerson ’56]
Max-flow with minimum transportation cost [Edmonds and Karp ’72]

2 Network vulnerability
Sequential games: network interdiction [Washburn ’95]
Simultaneous games [Wooders ’10], [Gueye ’12]
Vulnerability indices [Gueye ’12]

(Q): Network routing when the operator faces strategic link disruptions ?
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Recall: Max-flow (Min-cost) problem

Max-flow problem

(P1) : maximize F (x)
subject to x ∈ F ,

F (x) : Value of flow x

Max-flow with min-transportation cost

(P2) : minimize C1(x)
subject to x ∈ F

F (x) ≥ F (x ′) , ∀x ′ ∈ F ,

C1(x) : Cost of transporting flow x

Max-flow min-cut theorem: the maximum value of an s − t flow is equal to
the minimum capacity over all s − t cuts.
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Our focus

(Q): Network routing when the operator faces strategic link disruptions ?

We formulate a simultaneous non-zero sum game
Both transportation and attack costs
Attacker simultaneously disrupts multiple edges
Defender strategically chooses a flow but no re-routing after attack.

Main contributions
Structural insights on the set of Nash equilibria
Relation to classical network routing problems
Network vulnerability under strategic attacks
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Game

Γ := 〈{1,2}, (F ,A), (u1,u2)〉

Directed graph G = (V, E), and for every (i , j) ∈ E :
Edge capacity cij .
Edge transportation cost bij .

Player 1 (Defender) chooses a feasible flow x ∈ F .
Player 2 (Attacker) chooses the edges to disrupt through an attack µ ∈ A.

∀(i , j) ∈ E , µij =

{
1 if (i , j) is disrupted,
0 otherwise.

1 single s − t pair.
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Effective flow

Given a flow x and an attack µ, xµ is the effective flow.

s

1

2

t

xs1 = 2
µs1 = 0

x12 = 1
µ12 = 0

x2t = 2
µ2t = 0

xs2 = 1
µs2 = 1

x1t = 1
µ1t = 1

Initial flow and attack.
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xµs2 = 0

xµ1t = 0xµs1 = 1

xµ12 = 1

xµ2t = 1

Resulting effective flow
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Payoffs
Γ := 〈{1,2}, (F ,A), (u1,u2)〉

u1(x , µ) = p1 F (xµ)− C1(x) u2(x , µ) = p2 F (x − xµ)− C2 (µ)

where:
- F (xµ) =

∑
{i | (i,t)∈E}

xµit is the amount of effective flow.

- C1(x) =
∑

(i,j)∈E

bijxij is the transportation cost.

- C2 (µ) =
∑

(i,j)∈E

cijµij is the attacking cost.

- F (x − xµ) = F (x)− F (xµ) is the amount of lost flow.

Mixed-extension: for (σ1, σ2) ∈ ∆(F)×∆(A):

U1(σ1, σ2) = E[u1(x , µ)], U2(σ1, σ2) = E[u2(x , µ)]

SΓ is the set of Nash Equilibria.
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Example

∀(i , j) ∈ E , bij = 1.

s

1

2

t

xs1 = 2
µs1 = 0

x12 = 1
µ12 = 0

x2t = 2
µ2t = 0

xs2 = 1
µs2 = 1

x1t = 1
µ1t = 1

Initial flow and attack.

s

1

2

t

xµs2 = 0

xµ1t = 0xµs1 = 1

xµ12 = 1

xµ2t = 1

Resulting effective flow

u1(x , µ) = p1 − 7
u2(x , µ) = 2p2 − 2.

What properties does SΓ satisfy?
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Simplification

Assumption 1
There exists a max-flow with min-transp. cost x∗ that only takes s − t paths
that induce the lowest marginal transportation cost, denoted α.
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α = 3

Simplifying assumption without any loss of generality.
α plays an important role in the results.
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Regimes

p10 α

p2

1
supp(σ1∗) = {x0}

supp(σ2∗) = {µ0} supp(σ1∗) = {x∗}

supp(σ2∗) = {µ0}

supp(σ1∗) = {x0, x∗}

supp(σ2∗) = {µ0, µmin}

I

II

III
(mixed NE)

(pure NE)

(pure NE)

Proposition (Regime III)
If p1 > α and p2 > 1, then Γ has no pure NE. Furthermore,
∃σ0 = (σ1

0 , σ
2
0) ∈ SΓ such that U1(σ1

0 , σ
2
0) = U2(σ1

0 , σ
2
0) = 0. σ0 is defined by:

σ1
x0 = 1− 1

p2
, σ1

x∗ =
1
p2
,

σ2
µ0 =

α

p1
, σ2

µmin = 1− α

p1
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Illustration of the Regimes

Example: Every path induces the same transportation cost
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Necessary conditions

Probability bounds
Consider (σ1∗, σ2∗) ∈ SΓ. Then we have the following bounds:

Player 1:

If x0 ∈ supp(σ1∗), then σ1
x0
∗ ≤ 1− 1

p2

If x∗ ∈ supp(σ1∗), then σ1∗
x∗ ≤ 1

p2

Player 2:
If µmin ∈ supp(σ2∗), then σ2∗

µmin ≤ 1− α

p1

If µ0 ∈ supp(σ2∗), then σ2∗

µ0 ≤
α

p1

Remark: (σ1
0 , σ

2
0) proves that these bounds are tight.

Dahan, Amin (MIT) Flow Routing under Strategic Link Disruptions November 4, 2015 13 / 23



Necessary conditions

Attacker strategy σ2∗ and (P2)

For any NE (σ1∗, σ2∗), any µ in the support of σ2∗ disrupts edges that are
saturated by every max-flow with minimum transportation cost.

∀(σ1∗, σ2∗) ∈ SΓ, ∀µ ∈ supp(σ2∗), ∀(i , j) ∈ E , µij = 1 =⇒ ∀x∗ ∈ Ω2, x∗ij = cij

Example: every path induces the same transportation cost.
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Necessary conditions

Defender strategy σ1∗ and min-cuts

For every NE (σ1∗, σ2∗), any edge of any min-cut must be taken by at least
one flow x in the support of σ1∗.

∀(σ1∗, σ2∗) ∈ SΓ, ∀ min-cut E({S,T}), ∀(i , j) ∈ E({S,T}),

∃ x ∈ supp(σ1∗) | xij > 0

Example:
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Main results
Θ1 = F (x∗): Optimal value of the max-flow problem.
Θ2 = C1(x∗): Optimal value of the max-flow min-cost problem.

Theorem (Regime III)
If p1 > α, p2 > 1, and under Assumption 1, then for any σ∗ ∈ SΓ:

1 Both players’ equilibrium payoffs are equal to 0, i.e.:

U1(σ1∗, σ2∗) ≡ 0

U2(σ1∗, σ2∗) ≡ 0

2 The expected amount of flow sent in the network is given by:

Eσ∗ [F (x)] ≡ 1
p2

Θ1

and the expected transportation cost is given by:

Eσ∗ [C1(x)] ≡ 1
p2

Θ2
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Main results
Θ1 = F (x∗): Optimal value of the max-flow problem.
Θ2 = C1(x∗): Optimal value of the max-flow min-cost problem.

Theorem (Regime III)
3 The expected cost of attack is given by:

Eσ∗ [C2 (µ)] ≡ Θ1 −
1
p1

Θ2 =

(
1− α

p1

)
Θ1

4 The expected amount of effective flow (that reaches t) is given by:

Eσ∗ [F (xµ)] ≡ 1
p1p2

Θ2

5 The yield is given by:

Eσ∗ [F (xµ)]

Eσ∗ [F (x)]
≡ Θ2

p1Θ1

Eσ∗ [F (xµ)] decreases with p1 and p2!
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Properties

Expected amount of edge flow in min-cuts
Consider a min-cut E({S,T}), then:

∀(σ1∗, σ2∗) ∈ SΓ, ∀(i , j) ∈ E({S,T}), Eσ∗ [xij ] =
cij

p2

Probability of edge disruption in min-cuts
For any NE whose support only contains attacks that disrupt edges of a single
min-cut E({S,T}), we have:

∀(i , j) ∈ E({S,T}), P ((i , j) is disrupted) = 1− α

p1
.
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Proof of the Theorem (outline)

Consider σ∗ = (σ1∗, σ2∗) ∈ SΓ

Γ

Γ̃ (zero-sum)

σ0 = (σ1
0 , σ

2
0) ∈ SΓ

= SΓ̃

Ũ1, Ũ2

(σ1
0 , σ

2∗), (σ1∗, σ2
0) ∈ SΓ̃

Eσ∗ [C1(x)], Eσ∗ [F (x)], Eσ∗ [C2 (µ)]

U1, U2

Strategic
equivalence

Proposition

Constant payoff

Interchangeability

Complementarity slackness

Max-flow Min-Cut
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Relaxing Assumption 1
3 < p1 < 4 and p2 > 1.
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σ1∗
x =

1
p2

σ2∗
µ = 1− 3

p1

σ∗ = (σ1∗
, σ2∗

) is a NE.
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Conclusion and open questions

Results
Modeled a simultaneous non-zero sum network game
Obtained structural insights on the NE
Related the NE to max-flow min-cost and min-cut
Determined the vulnerability of a graph under strategic attack

Ongoing
Nash equilibria of the one-stage game within the class of mixed strategies
under link disruptions caused due to either reliability or security failures
Equilibria for the finitely or infinitely repeated game
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