

University of Michigan - Ann Arbor

Defense Policies for Partially Observed Spreading Processes on Bayesian Attack Graphs

Erik Miehling Mohammad Rasouli Demosthenis Teneketzis

FORCES Meeting, Berkeley, CA – May 28-29, 2015

Motivation

* Three key factors in *information security* problems:

Confidentiality (C) — Ensuring data does not get into the wrong hands, that is, maintaining privacy

Integrity (I) — Maintaining accuracy and trustworthiness of information **Availability (A)** — Ensuring that data is always available to trusted users

- * We are interested in the problem of protecting specific, important resources
 - * Closely related to confidentiality and integrity
 - Need to ensure key resources are still available while protecting assets

The Conflict Environment

- * We consider a dynamic setting where a network is continually being subjected to attacks with the objective of compromising some *target resources* through *exploits*
 - * Resources that contain sensitive data
 - * Resources that, when compromised, give an attacker control of a critical part of the system, potentially with catastrophic consequences
- * Aspects of our model
 - *Progressive attacks* recent exploits build upon previous exploits, progressively degrading the system
 - * **Dynamic defense** defender is choosing the best action based on *new* information
 - * *Partial knowledge* the defender only possesses a *guess* of the current exploits
- * The defender can *control services* in the network to prevent the attacker from reaching the target resources

Attack Graphs

- Insufficient to look at single vulnerabilities when protecting a network
 - Attackers combine
 vulnerabilities to penetrate the
 network

- * *Attack graphs* model how multiple vulnerabilities can be combined and exploited by an attacker
 - * Explicitly takes into account *paths* that the attacker can take to reach the critical exploitation

Graph Theoretic Representation

* Consider a directed graph, denoted by $\mathcal{G} = \{\mathcal{N}, \mathcal{E}\}$

 $\mathcal{N}_R = \{1, 5, 7, 8, 11, 12, 16, 17, 20\}$ $\mathcal{N}_C = \{9, 14\} \subseteq \mathcal{N}_L = \{2, 9, 14, 18\}$

- * Nodes, \mathcal{N} , represent attributes $\mathcal{N}_R \subseteq \mathcal{N}$: root nodes
 - No prior exploit occurred
 - Outer layer of network (exposed to world)
 - $\mathcal{N}_C \subseteq \mathcal{N}$: critical nodes
 - Deepest exploit level
 - Attacker is attempting to achieve one of the attributes
- Directed edges, *E*, denote
 exploits (transitions between attributes)

Spreading Process

- The attacker's behavior is assumed to follow a *probabilistic spreading process* (i.e. Bayesian attack graph)
- Each attribute (node) *i* can be in one of two states

Disabled: $X_t^i = 0$ **Enabled:** $X_t^i = 1$

- * *Infection seed and spread*: At each time *t*
 - A. Each root attribute is enabled with probability α_i
 - B. Infection spreads according to ``predecessor rules''

At time $t = \tau$:

Spreading Process – Predecessor Rules

set of direct

predecessors

- * Each attribute (node) is one of two types
 - * **AND** attribute
 - * **OR** attribute
- * The type of the attribute dictates the nature of the spreading process
- * For **AND** attributes, e.g. node *l*

$$P(X_{t+1}^{l} = 1 | X_{t}^{l} = 0, X_{t}) = \begin{cases} \prod_{p \in \bar{\mathcal{D}}_{l}} \alpha_{pl} & \text{if } \bigwedge_{p \in \bar{\mathcal{D}}_{l}} X_{t}^{p} = 1 \\ 0 & \text{otherwise} \end{cases}$$

* For **OR** attributes, e.g. node *k*

$$P(X_{t+1}^k = 1 | X_t^k = 0, X_t) = \begin{cases} 1 - \prod_{p \in \bar{\mathcal{D}}_k} (1 - \alpha_{pk}) & \text{if } \bigvee X_t^p = 1 \\ 0 & \text{otherwise} \end{cases}$$

At time $t = \tau$:

5/28/2015

Defender's Observations

- * Defender only partially observes this process
 - * The *probability of detection* at node *i* is β_i

- Rationale: defender may not known the full capability of the attacker at any given time
- Defender thus observes a subset of enabled attributes that have been discovered at each time-step

- * We employ a *moving target defense* scheme, termed *network hardening* to protect against exploits
- * Existence of exploits depend on protocols (services)
 - * <u>Secure Sh</u>ell (SSH)
 - * <u>File Transfer Protocol (FTP)</u>
 - * Port scanning
 - * etc.
- * Defender can thus temporarily block or disable these services to stop the attacker from progressing

 \bigcirc

- * Suppose there are a set of M services $\{u^1, \ldots, u^M\}$
- * Taking action u^m corresponds to disabling service m
 - * u^m disables a subset of the attributes \mathcal{W}_{u^m}

$$12$$

 12
 11
 12
 12
 13
 14
 20
 13
 13
 15
 15
 17
 16
 16
 16
 18

(11)

- $X^i = 0, \ i \in \mathcal{W}_{u^m}$
- * Action at time *t*

$$u_t \in \mathcal{U} = \mathcal{O}(\{u^1, \dots, u^M\})$$

- $\mathcal{W}_{u^1} = \{1\}$
- * Assume that all root attributes are covered by at least one service

- * Suppose there are a set of M services $\{u^1, \ldots, u^M\}$
- * Taking action u^m corresponds to disabling service m
 - * u^m disables a subset of the attributes \mathcal{W}_{u^m}

$$X^i = 0, \ i \in \mathcal{W}_{u^m}$$

* Action at time *t*

$$u_t \in \mathcal{U} = \mathcal{O}(\{u^1, \dots, u^M\})$$

- $\mathcal{W}_{u^2} = \{5, 17\}$
- * Assume that all root attributes are covered by at least one service

(2)

- * Suppose there are a set of M services $\{u^1, \ldots, u^M\}$
- * Taking action u^m corresponds to disabling service m
 - * u^m disables a subset of the attributes \mathcal{W}_{u^m}

$$(12)$$

 (12)
 (12)
 (12)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)
 (13)

- $X^i = 0, \ i \in \mathcal{W}_{u^m}$
- * Action at time *t*

$$u_t \in \mathcal{U} = \mathcal{O}(\{u^1, \dots, u^M\})$$

- $\mathcal{W}_{u^3} = \{13\}$
- * Assume that all root attributes are covered by at least one service

- * Suppose there are a set of M services $\{u^1, \ldots, u^M\}$
- * Taking action u^m corresponds to disabling service m
 - * u^m disables a subset of the attributes \mathcal{W}_{u^m}

$$X^i = 0, \ i \in \mathcal{W}_{u^m}$$

 $\begin{array}{c} u^{4} \\ u^{1} \\ u^{1} \\ 1 \\ u^{2} \\ u^{4} \\ u^{2} \\ u^{6} \\ u^{6} \\ u^{4} \\ u^{5} \\ u^{5} \\ u^{5} \\ u^{5} \\ u^{5} \\ u^{6} \\ u^{6} \\ u^{4} \\ u^{4} \\ u^{5} \\ u^{5} \\ u^{5} \\ u^{5} \\ u^{5} \\ u^{6} \\ u^{6} \\ u^{4} \\ u^{4} \\ u^{4} \\ u^{5} \\ u^{5} \\ u^{5} \\ u^{5} \\ u^{5} \\ u^{6} \\ u^{6} \\ u^{4} \\ u^{4} \\ u^{6} \\ u^{6} \\ u^{6} \\ u^{4} \\ u^{6} \\ u^{6} \\ u^{6} \\ u^{4} \\ u^{6} \\ u^{$

* Action at time *t*

$$u_t \in \mathcal{U} = \mathcal{O}(\{u^1, \dots, u^M\})$$

* Assume that all root attributes are covered by at least one service

Cost Function

* Cost of taking action $u \in \mathcal{U}$ in state $X \in \{0, 1\}^N$

- * **State cost**, C(X): cost of being in a particular state
- * Availability cost, D(u): cost dependent upon how many resources the defense action renders unusable (due to the disabling of the service)
- * The costs capture the confidentiality, integrity, and availability factors

Defender's Information States

- * Define the history up to time *t* as $H_t = (\pi_0, u_1, y_1, u_2, y_2, ..., u_{t-1}, y_t)$
- * We capture H_t by an *information state* $\pi_t = (\pi_t^1, \ldots, \pi_t^K) \in \Delta(\mathcal{X})$

$$\pi_t^i = P(X_t = x_i | H_t)$$

* Information state obeys the update rule $\mathcal{T} : \Delta(\mathcal{X}) \times \mathcal{Y} \times \mathcal{U} \to \Delta(\mathcal{X})$

$$\pi_{t+1} = \mathcal{T}(\pi_t, y_{t+1}, u_t)$$

Defender's Optimization Problem

* Choose a control policy $g : \Delta(\mathcal{X}) \to \mathcal{U}, g \in \mathcal{G}$ that solves

$$\min_{g \in \mathcal{G}} \mathbb{E} \left\{ \sum_{t=0}^{\infty} \rho^t C(\pi_t, g(\pi_t)) \big| \pi_0 \right\}$$

subject to $u_t = g(\pi_t)$
 $\pi_{t+1} = T(\pi_t, y_{t+1}, u_t)$

Example

Attributes:

- 1. Vulnerability in WebDAV on machine 1
- 2. User access on machine 1
- 3. Heap corruption SSH on machine 1
- 4. Root access on machine 1
- 5. Buffer overflow on machine 2
- 6. Root access on machine 2
- 7. Squid portscan on machine 2
- 8. Network topology leakage from machine 2
- 9. Buffer overflow on machine 3
- 10. Root access on machine 3
- 11. Buffer overflow on machine 4
- 12. Root access on machine 4

Example - Countermeasures

 u^4 : disconnect machine 4

Attributes:

- 1. Vulnerability in WebDAV on machine 1
- 2. User access on machine 1
- ² 3. Heap corruption SSH on machine 1
 - 4. Root access on machine 1
- 5. Buffer overflow on machine 2
- 6. Root access on machine 2
- 7. Squid portscan on machine 2
- 8. Network topology leakage from machine 2
- 9. Buffer overflow on machine 3
- 10. Root access on machine 3
- 11. Buffer overflow on machine 4
- 12. Root access on machine 4

Future Work

* Structural results

- * Directed acyclic graphs give rise to a natural partial order
- * Can we use this to show threshold properties of the optimal policy?
 - * If so, determining an approximately optimal policy would reduce to estimating these thresholds
- * Scaling the problem
 - * Exact POMDP solvers only capable of handling small examples
 - * Realistic attack graphs are big...

Thank You!

Questions?

Funding Acknowledgments

* Special thanks to the following funding sources

 NSF — Foundations Of Resilient CybErphysical Systems (FORCES)

Grant: CNS-1238962

 ARO MURI — Adversarial and Uncertain Reasoning for Adaptive Cyber Defense: Building the Scientific Foundations

Grant: W911NF-13-1-0421

