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The swarm at the edge of the cloud
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From Action Webs to Resilient CPS

Resilient/High Confidence Networked
Control

Fault-tolerant networked control
Limits on stability, safety, &
optimality
Scalable model predictive control

Security & Resilient Control
Availability, Integrity, &
Confidentiality
Graceful degradation

Economic Incentives
Incentive Design for investing in
security
Interdependent Risk Assessment &
Cyber Insurance



Societal Scale CPS

A complex collection of sensors, controllers, compute nodes,
and actuators that work together to improve our daily lives

From very small: Ubiquitous, Pervasive, Disappearing,
Perceptive, Ambient
To very large: Always Connectable, Reliable, Scalable,
Adaptive, Flexible

Emerging Service Models
Building energy management
Automotive safety and control
Management of metropolitan traffic flows
Distributed health monitoring
Smart Grid



Economic Impact
Electricity Grid:

Utilities are currently utilizing smart meters for meter-to-cash.
The potential of smart meters go far beyond this basic usage
and the utilities are looking for a justification for their
investments. The market for energy analytics in the smart
grid is estimated to be worth 9.7 billion by 2020

Transportation Systems:
It is estimated that more than 4.2 billion hours are wasted
sitting in traffic, resulting in 2.8 billion gallons of wasted fuel
and costing more than 87 billion dollars annually. By utilizing
tools such as intelligent transportation systems (ITS) we can
actively manage our transportation network to improve safety,
efficiency, and multimodal connectivity.

Other Critical Infrastructures:
Healthcare systems, Water systems, Natural gas and oil and
other energy infrastructures
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Why Incentive Design?

There is often a substantive gap between competitive Nash
equilibria and the social planner’s optimum (Hal Varian, et al).
Due to information asymmetries and misaligned objectives,
the actions taken by agents in S-CPS are not socially optimal.
Incentives are the natural mechanism for aligning agents so
that they behave in a socially optimal way.

In Energy CPS:
Consumers and Utilities are not well informed about their
energy consumption patterns; incentives allow utility
companies to motivate consumers to use less energy.

In Transportation CPS:
Drivers often travel at peak hours; incentives can be used to
encourage drivers to shift their departure time by only a few
minutes for some reward resulting in overall reduced
congestion.



Societal CPS for the Smart Grid



Incentives

In the regulated energy market, utility companies are incentivized to reduce the
overall consumption of their consumer base.

Demand response programs incentivize customers to shift their demand thereby
alleviating inaccuracies in load forecasting. Device-level incentives can be
designed via non-intrusive load monitoring.

Incentive Design needs a game theoretic model including data-driven models
for agent behavior and their identification these during on-line operation.

New Vulnerabilities: Adversarial agents who may spoof their energy signal, lie
about their privacy needs or otherwise disrupt the energy system.



Learing with Multiple Players

Individual Agent
Decision-Making Model

ξ ξ̂ (x)
γ x ξ̂

Many Decision Makers

X

estimation/
classification

ε,δ

e.g. player classification,
estimate energy usage,

estimate average vote, etc.

Can we scale from the individual-level game-theoretic model of
decision making to aggregate estimation / classification? task?



The Learning to Learn Framework

Learning to Learn: can improve estimation by simultaneously
learning multiple similar tasks

ν ,σ ,α,β

µi,λi

ξ k
i

hyper-

parameters

µi ∼N (ν ,σ), λi ∼ Γ(α,β )

Group-Level Variation

ξ k
i ∼ N (µi,λi)

Individual Randomness

ξ k
i 7→ xk

i (via game)
Observation

Generative Model:
Game–Theoretic Decision–Making



Basic Statistical Bounds on Parameter Inference

Learning to Learn: we can provide bounds on parameter inference error.

Cramér–Rao bound for hyper–parameters θ = (α,β ,ν ,σ): for estimator θ̂(X),

EX
[
(θ i− θ̂ i)

2]︸ ︷︷ ︸
MSE of θi

>
1

nζi
, where ζi =−EX

[
∂ 2 lnp(X|θ)

∂θ
2
i

]
︸ ︷︷ ︸

curvature
Remark: lower bound decreases by order 1/n (number of users)

Bayesian Cramér–Rao Bound for θr = (µi,λi), for any estimator θ̂r,

E
ξ

t,θ

[(
θ̂(ξ t)−θ

)(
θ̂(ξ t)−θ

)T
]
>

[
(α−1)βσ

Tσ−(α−1)β 0

0 2(α−1)(α−2)β 2

T+2α−2

]

Remark: decreases by order 1/T where T is number of samples

Hybrid Cramér–Rao bound applicable to the joint estimation of random and
non–random parameters.



Reliable Estimation of Stopping Time Algorithm
REST: data-driven method based on concentration inequalities.
Consider for example a scenario with n >> 1 occupants with
lighting objectives and a planner with an energy saving objective
f : (x1, . . . ,xt) 7→ f (x1, . . . ,xt) ∈ R e.g.

Estimate average lighting: 1
t

t
∑

j=1

(
1
n

n
∑

i=1
[xj]i

)
Avg. vote at time j

.

Lighting energy: 1
t

t
∑

j=1
g
(

1
|S\Sj

absent|
∑

i6∈Sj
absent

[xj]i

)
Avg. energy at time j

Occupant classification error: 1
n ∑

n
i=1 1(h(x1

i , . . . ,xt
i) 6= yi)

The stopping time is the number of samples T needed before a
specified error tolerance is reached. Standard statistical methods
such as McDiarmid’s Inequality and the Delta Method provide an
algorithm to approximate the optimal stopping time: The Delta
Method gives tighter asymptotic estimation, but the McDiarmid
Inequality can be applied to more general problems, such as the
classification of players



Classifying Multiple Players

Task: classify agents into different categories based on behavior.
Incentive design: data-driven method to understand preferences
Customer segmentation for energy management

User profiles: 132 players (33 replicates of each of the types below) in
social game based on usage of shared resources in co-laboratory space

Lighting Comfort Incentive Award Game Participation
Comforter FFF F FFFF
Gamer F FFF FFFF
Balancer FF FF FFFF
Nonchalancer F F FF

∗∗ each ? indicates abstractly the amount the user types care about each of the
categories



Classification of Player Category — Results
Random function of deviation from the best performance:

f (h;xt,y) = L(h;xt,y)− inf
h∈H

E [L(h;x,y)] ;

where the loss function L is the proportion of misclassified users.
Bound on loss: Pr

(
Lt > ε +κt +ρ

)
6 Pr

(
ft−E [ft]> ε

)
6 1−δ

Simulation: 33 replicates of each type using occupant models
generated out of data from real experiments.
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Energy Disaggregation

Energy disaggregation, or non-intrusive load monitoring (NILM):

aggregated energy signal

household/building available measurements

The desired signal is the energy signals for each individual device.



Energy Disaggregation
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Approaches to Disaggregation

Hidden Markov Models

Unsupervised
Requires tuning of parameters.
The states are constant wattage
levels; usage patterns and
device signatures are encoded in
transition probabilities.

Sparse Coding

Supervised
Assume inputs are sparse.
Reconstruct the aggregate
signal by selecting as few
signatures as possible from a
library.



Disaggregation Framework: Systems Approach

y[t]

y [t]

y [t]

y [t]

1

2

3

devices

u[t]

u [t]

u [t]

u [t]

1

2

3

We learn dynamical models for the devices.
In our proposed framework:

We have theoretical results guaranteeing recovery of the most
likely device consumption signals.
In our framework, we also learn dynamics of devices, which is
useful for other Smart Grid operations.



Incentive Design Using Energy Disaggregation

Given an upper bound on the probability of distinguishing
devices, the utility company can design incentives that induce
the consumer to use the desired amount of energy for a device
with an error proportional to the probability of distinguishing
devices.

Ratliff, Dong, Ohlsson, Sastry. Behavior Modification and Utility Learning via Energy Disaggregation. IFAC, 2014.



Benefits of Energy Disaggregation

Beyond improved incentives, other benefits of disaggregated energy
consumption data:

Simply providing appliance-level power consumption
information to energy consumers can achieve 20% energy
savings in residential buildings, and sustain savings over the
long-term.
Disaggregation has the promise of additional reliability: fault
detection, maintenance, repair, resilience, etc.

Gardner and Stern, The Short List: The Most Effective Actions U.S. Households Can Take to Curb Climate
Change, 2008.
Laitner et. al, Examining the scale of the Behaviour Energy Efficiency Continuum, 2009.
Armel et. al, Is disaggregation the holy grail of energy efficiency? The case of electricity, 2013.
Hart, Nonintrusive appliance load monitoring, 1992.



Privacy Concerns with Disaggregation

DLC
Scheme

HVAC Usage

disaggregation

Energy disaggregation1,2: decomposing the whole building energy
signal into device-level consumption.

Privacy Invasion?

Inference of information about consumers: when you eat, watch TV,
take a shower3.
Such information is highly valuable and will be sought by many
players: advertising4, law enforcement5, criminals6, power company
(for designing incentives).

1Dong, Ratliff, et. al., Allerton 2013 2J. Froehlich, E. Larson, S. Gupta, G. Cohn, M. Reynolds, S. Patel, IEEE
CS, 2011 3M. Lisovich, D. Mulligan, S. Wicker, IEEE Security Privacy, 2010. 4R. Anderson, S. Fluoria, 9th
Workshop on Economics of Information, 2010. 5G. Smith, Marijuana bust shines light on utilities, Post and
Courier, 2012. 6Government Accountability Office, 2011.
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The Emerging Data Market



Smart, Connected Infrastructure



Operational Efficiency Informed by Usage Patterns



Closing the Loop — Integrating the End-User



Emerging Data Market — Data as a Commodity



Old School Regulation



Breakin’ the Law, Breakin’ the Law, . . .



Technologically-Aware Regulation and Policy



Big CPS Data and Privacy

Data Minimization Principle (NIST Internal Report 7628)
Limit the collection of data to only that necessary for Smart Grid
operations, including planning and management, improving energy
use and efficiency, account management, and billing.

Non-actionable! Privacy is ontologically subjective

Inference Metrics:
Inferential Privacy1: Suppose an adversary uses an inference
algorithm ua(y), then p(ua(y) = u∗)6 p(uMAP(y) = u∗).
Information theoretic metrics2

Differential Privacy3

1R. Dong, L. Ratliff, et al., HiCoNS 2014. 2Sankar, et al., IEEE TSG 2012. 3Dwork, Microsoft Research Tech.
Report, 2006.



Inferential Privacy Framework

Consumers have a private parameter ξ , distributed according to
some prior pξ . Assume ξ takes r different values, with r < ∞.
This private parameter determines usage parameters: u|ξ ∼ pu|ξ .
The usage parameters determine observable energy consumption:
y|u,ξ ∼ py|u.
Let py|ξ (y|ξ ) =

∫
py|u(y|u)pu|ξ (u|ξ )du.

The adversary knows the model pξ , pu|ξ , and py|u and observes y.

Inferential privacy: The model is α inferentially private if for any
estimator ξ̂ : y 7→ ξ̂ (y), we have:

P(ξ̂ (y) 6= ξ )> α



Maximum A-Posteriori Estimator

The Maximum A-Posteriori (MAP) estimator is given by:

ξ̂MAP(y) = argmax
ξ̂

pξ (ξ̂ )py|ξ (y|ξ̂ )

Optimality of the MAP estimator: The model is α inferentially
private with:

α = P(ξ̂MAP(y) 6= ξ )

Furthermore, it is not α ′ inferentially private for any α ′ > α.

Often, it is not easy to calculate this value of α.



Inferential Privacy Approximations

Le Cam’s method (total variation distance): The model is α

inferentially private with:

α = max
ξ1 6=ξ2

[
min

(
pξ (ξ1),pξ (ξ2)

)
· 1

2

∫ ∣∣py|ξ (y|ξ1)−py|ξ (y|ξ2)
∣∣dy
]

Fano’s inequality (Kullback-Leibler divergence): The model is
α inferentially private with:

α =
1

ln(r−1)

[
ln(r)− 1

r ∑
ξi,ξj

∫
py|ξ (y|ξ1) ln

(
py|ξ (y|ξ1)

py|ξ (y|ξ2)

)
dy− ln(2)

]

These only require pairwise calculations!



Inferential Privacy Examples

Inferential Privacy Guarantee: α provides a lower bound on the
probability an adversary makes an incorrect inference.
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Quantifying the Societal Efficiency–Privacy Tradeoff

DLC
Scheme

HVAC Usage

disaggregation

Efficiency-Privacy Tradeoff:
Direct Load Control DLC) performance degrades as privacy–preserving metering
is increased.
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R. Dong, A. Cardenas, L. Ratliff, H. Ohlsson, S. Sastry. IEEE TSG, 2014 (under review, arxiv:1406.2568)



Privacy Settings on Smart Meters
Utility desires high-fidelity data for smart grid operations.
However, high-fidelity data increases risk of privacy breach
(adversarial inference) and consumers want to protect their privacy.

Incentive Design Solution: Offer privacy-setting options on smart meter
at different prices.

Consumers
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gh
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Power Company



N–Privacy Settings Incentive Design Formulation

Privacy settings on smart meters are viewed as a good.

The consumer’s type is θ and it characterizes the electricity
consumption privacy needs of the consumer.

The type θ ∈Θ = {θ1, . . . ,θn} where θ1 is the lowest valuation of
privacy and θn the highest with θi > θj for i > j.

The utility company faces a problem of adverse selection since the
type of the consumer is unknown.

x : Θ→ R denotes the quality of the good. Since Θ is finite, we can
define xi = x(θi).

The utility company designs a menu of contracts: {(ti,xi)}n
i=1 in

order to maximize its profit.

Ratliff, Barreto, Dong, Ohlsson, Cárdenas, Sastry. Effects of Risk on Privacy Contracts for Demand-Side
Management. IEEE TSG, 2014. (under review–Sept. 2014)



Individual Rationality and Incentive Compatibility

Consumer’s Utility: U(x,θ)− t

It is desirable that the consumer voluntarily participates and selects
the contract designed for her type.

Individual Rationality constraint ensures voluntary participation:

U(x,θ)− t > Uo, where Uo is the utility of the outside option

Incentive Compatibility constraints ensure the consumer reports
her type truthfully, i.e. selects the contract designed for her:

U(xi,θi)− ti > U(xj,θi)− tj ∀ i, j



Utility Company’s Optimization Problem
Prior on types: P(θ = θi) = pi, ∑

n
i=1 pi = 1, Unit Cost to Utility: g(x)

Screening Problem:


max

{(ti,xi)}ni=1

∑
n
i=1 pi(ti−g(xi))

s.t. U(xi,θi)− ti > 0, ∀i (IR)
U(xi,θi)− ti > U(xj,θi)− tj, ∀i, j (IC)

There are n(n−1)+n constraints!

Assumption: (Spence-Mirrlees single-crossing condition)
Marginal gain from increasing the privacy setting x is greater for type
θi+1 than type θi, i.e. U(x,θi+1)−U(x,θi) is increasing in x.

Screening Problem:
(Redux)



max
{(ti,xi)}ni=1

∑
n
i=1 pi(ti−g(xi))

s.t. U(x1,θ1)− t1 = 0, (IR-1)
U(xi,θi)− ti > U(xi−1,θi)− ti−1, (LDIC-i)
∀i ∈ {2, . . . ,n},
xi > xj for each θi > θj

Solution to the above referred to as (Second-Best in the
Contracts literature): Ysb = {(tsbi ,xsbi )}n

i=1
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The Value of Information

First-Best Solution:[
max
(x,t)
{t−g(x)| U(x,θ)− t > 0}=max{U(x,θ)−g(x)}

]
=⇒ Y fb = {(tfbi ,xfbi )}n

i=1

Basic Insights:
Type θn (highest valuation of privacy) gets
the socially optimal privacy setting,
xfbn = xsbn
All other types get an inefficient
allocation, xfbi > xsbi
Type θ1 (lowest valuation) gets zero
surplus, U(xsb1 ,θ1) = tsb1
All other types enjoy some positive
information rent and hence, free-ride
on society,

IR(θi) = ∑
i−1
j=1(U(xsbj ,θj+1)−U(xsbj ,θj))> 0

t

x

Info. Rent

U(x,θn)− t =

info. rent︷ ︸︸ ︷
U(x∗n ,θn)− t∗n > 0

U(x,θn)− t = 0

U(x,θ1)− t = 0

x∗1

x∗n

(tfb1 ,xfb1 )

t∗n tfbn

U(x,θi)− t = 0
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Large Numbers of Consumers – Problem Formulation

Consider now that we have N >> 1 consumers where consumer j’s types
is θ j ∈Θj = {θ j

1, . . . ,θ
j
n}.

max{Y j}Nj=1
∑

N
j=1 ∑

n
i=1 pj

i(t
j
i−g(xj

i))

s.t. U(xj
1,θ

j
1)− tj

1 = 0 (IR-1,j)
U(xj

i,θ
j
i )− tj

i = U(xj
i−1,θ

j
i )− tj

i−1 (LDIC-i,j)
xj

i > xj
k when θ

j
i > θ

j
k

∀i ∈ {2, . . . ,n}, ∀j ∈ {1, . . . ,N}

where Y j = {(tj
i,x

j
i)}n

i=1

Remark: Due to lack of network effects of information in this model, the
problem decomposes into a single problem per consumer.
Future Work: Contracting over DLC (curtailment agreement) AND
privacy setting.



Privacy Aware Contracts — Summary and Ongoing Work

Implementing privacy-aware data collection policies results in a
reduction in the efficiency of grid operations.
Designed contracts in which electricity service is differentiated
according to privacy to manage the efficiency-privacy tradeoff.
Qualitative insights that show high-type free-rides, motivation to
study insurance-security investment, and need for regulation
(subsides) to achieve social optimum.
Similar analysis can be done on insurance contracts.

Open Questions:
What is the impact of multiple consumers with varying levels of
consumption and different privacy preferences on social welfare?
Can we sequentially update the prior on preferences?
What about the counterpart to privacy, namely, security/theft?
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Thank you for your attention. Questions?

Shankar Sastry
sastry@coe.berkeley.edu
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