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Roughly one attack a month on the traffic

management infrastructure
The Italian Job (2003)
The “real” Italian Job (2007)
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Los Angeles

| The UPS Store Notary Service. | Key signals targeted, officials say
Find a center in your area, | 7“0 occusedof

f hacking into L.A.'s traffic lig //!\1/ stem plead not guilty. They allegedly
chose in ions they knew would ca

January 09, 2007 | Sharon Bernstein and \ndru» Blankstein | Times Staff Writers



management infrastructure

The Italian Job (2003)
The “real” Italian Job (2007)
NC DOT signs hacked (2014)
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FBI investigating hacked NCDOT digital road signs

Reaction of humans READ MORE: News New Hanover County News Crime Cybercrime FBI Hacking N.C.
users to the NCDOT  Transportation
regulation 7] o s)  CEED

WILMINGTON, NC (WWAY) -~ The North Carolina Department
of Transportation says the F81 is looking into a group that
hacked Into at least five digital road signs yesterday,
Including one in New Hanover County.

The DOT says it is also evaluation the security measures in
place for its digital road signs after a group changed the
intended transportation. ed messages on the signs to an
advertisement for its Twitter account. According 10 & news
released, the DOT corrected the messages as 5000 as it
iscovered the hackings.

The DOT says the hacked message boards are on Carolina
. Beach Road in New Hanover county, 140 and 1-240 in Asheville, US 421 in Winston-Salem and |-
o 77 near the North Carolina/Vieginia state line.
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management infrastructure
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Roughly one attack a month on the traffic
management infrastructure

The Italian Job (2003)

The “real” Italian Job (2007)
NC DOT signs hacked (2014)
Snail operations (2014)

Waze / Google hacked (2014)

0.4 miles
Golden Gate Bridge
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i | Students hack Waze, send in army of traffic bots
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Roughly one attack a month on the traffic
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NC DOT signs hacked (2014) mearieve, HEH
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management infrastructure

The Italian Job (2003)

The “real” Italian Job (2007)
NC DOT signs hacked (2014)
Snail operations (2014)

Waze / Google hacked (2014)
Sensys Attack (2014)
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Cesar Cerrudo in downtown New York City,

(‘ FO RCES  conducting field test of vulnerable traffic
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Presented at the previous FORCES all
hands

Attack on the sensing infrastructure, and the control
infrastructure

Connected ' = Berkeley
Corridors =0 = =] =01
Higﬁ-}i&elity = —J=]=
simulation = .
software et s o e
. 2 &5 SMARTROADS

Well-managed and resilient traffic flows
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Presented at the this FORCES all hands

How do humans learn from attacks / ops / to protect / attack
performance of the system
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Context: (non-)collaborative players

Commonly spread ansatz about decision making in routing: if
you reduce your own travel time, you help the public good.

Building the city of our
Press Releases dreams starts with you,
Home -+ Media - Procs Refoates sign up!
Mayor Garcetti Details Agreement with | acer]

WAZE to Help Reduce Congestion,
Increase Safety, and Improve Driving [ v et
% Experience Around LA. *m

KR

F’;
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Context: (non-)collaborative players

Commonly spread ansatz about decision making in routing: if
you reduce your own travel time, you help the public good.

Los Angeles and Waze Team Up to Combat Traffic
Congestion

ever visited. So it makes sense that the LA mayor's office has

lows data to be shared batween the

s while the app will give the city a wealth of data to analyze how

= FORCES —
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Context: (non-)collaborative players

Commonly spread ansatz about decision making in routing: if
you reduce your own travel time, you help the public good.

woc [URTN GrTmis  TALKTOUS  PERFORMANCE  ASOUT

e The Boston Globe Qseanci

beta Boston —

Boston partners with Google's Waze app to improve traffic flow in the

city

Every day is

a big day for
Small Business.
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Reality: without optimal coordination, users experience the
difference between social optimal and Nash

traffic to their streets
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Reality: without optimal coordination, users experience the
difference between social optimal and Nash

bte Helps
fe's How.

hing?

NDI

*WRATTER#*

Waze Has No Concept Of The Hell That Is
LA Traffic

@ o s
‘Waze markets itself as a hip, modern, ity-based app that helps urban driv time

and stay safe on the road, but Waze is the very same company that is repeatedly fucking over
Angelenos during rush hour traffic.

s by Google

CA Online Traffic School
Californis DMV-Licensed Course. Easy To Pass! 2477 Support - $13.95
Wirivesafely com'CA-Traffic-School

people are referring to on Reddit as the “sulcide
left,” which entails turning from a small side street onto a busy, multi-lane road during peak
traffic hours without a stoplight. Other users also complain that the app will suggest dearing the
entire road straight acrass. Not anly do these options waste time as drivers either wait for a
chance to cross or turn, bet thy i Iso d:

— ]
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Context: (non-)collaborative players

Reality: without optimal coordination, users experience the
difference between social optimal and Nash

pandodaly IVINTS  VIDIO  AUDIC  PANDOLAND [w]t[m[r]> ] ‘a“
STARYUP () Tut HACKING ., PN O iew Retic
e =

Angry LA residents are irying to sabotage Waze data to
stop side-street congestion

-
W Ssan.

chance to cross or turn, but these suggestions are also dangerous. l




Context: (non-)collaborative players

Reality: without optimal coordination, users experience the
difference between social optimal and Nash

froay

STARYDS

Start Quote

% 15%... need | say more? 2IP

Angry LA resident:
stop side-street col

| EE=aen

BUSINISS  IDUCATION  SPORTS  HOLLYWOOD  UFE  WIATHIR  OC

‘Cut-through’ traffic caused by Waze app
must stop, L.A. councilman says




INTERNET Ot Sccsad Yo, il Sl g 16y e

Can Social Media Help To Reduce
Traffic Congestion?

BN ¢ o f] |

By keithbuller on Jon. 7,7011 - 400 PM W8 § Comments

Serd an sncmymous 1o

We use social media to inform our friends about getting *
engagel. We use social media ta tell our followers about a
special eveat in town, Will we soon be using social media to warn other drivers of an accident?

According to the experts, this is the future. Having social media available in cars will allow for more

Annual cost of congestion: $20.8B (TTI Urban Mob. Rep. 2012)
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Problem set up: one shot / repeated
game

N players are routing traffic
Private sector apps (Google, Waze, Apple, INRIX etc.)
Some public sector apps (511)

Except some specific public agencies, none of these players are
solving for social optimal solutions.

At best, all of these are providing Nash solutions, i.e. routes in
which each user has no incentive to change his/her trajectory.

What if companies “learned” from the past?

SRRGE
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e —

Structure of a learning game:

Make choice (route)

Perform action (drive the route)

Compare outcome with external information
Learn (for next action)

Page «#>
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© Introduction

© Convergence of agent dynamics
@ Background
o Approximate replicator dynamics (AREP)
@ Distributed stochastic mirror descent dynamics (DSMD)

© Application to routing
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Interaction of K decision makers

Decision maker k faces a sequential decision problem

At iteration t

(1) chooses probability distribution XXZ over action set Ay
(2) discovers a loss function Esi)k s A — [0,1]

(3) updates distribution

Environment

learning algorithm outcome
(t+1) _ (t)
Xa, T U ( Angk) 4
Agent k

Figure: Sequential decision problem.
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Interaction of K decision makers

Decision maker k faces a sequential decision problem

At iteration t

(1) chooses probability distribution XXZ over action set Ay
(2) discovers a loss function Esi)k s A — [0,1]

(3) updates distribution

Environment

Other agents
learning algorithm outcome
xﬁ:—l) ( Ak’e ) f"Ak(XXi,..‘,XXL)
Agent k

Figure: Sequential decision problem.

Loss of agent k affected by strategies of other agents.
Does not know this function, only observes its value.



Convergence to equilibria

B

o Can we guarantee x(! — X*? Can players arrive to equilibrium?
o x(t) = (Xﬁl, . ’XS:L)
o X* set of equilibria.

o Convergence rates?

@ Robustness to stochastic perturbations?

25/54
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Examples of decentralized decision makers

Routing game
@ Player drives from source to destination node
o Chooses path from Ay

@ Mass of players on each edge determines cost on that edge.

Figure: Routing game

References
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Examples of decentralized decision makers

Routing game
@ Player drives from source to destination node
o Chooses path from Ay

@ Mass of players on each edge determines cost on that edge.

Figure: Routing game
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Online learning model: illustration

w‘

Sample a ~ x(® Discover f&f)l €[0,1]*1  Update xf::l)

27/54
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Convergence of distributed learning

1: for t € N do
2: Each agent k plays X_A) (mdependently)
3: Reveal loss vector £4, (x\)) € [0, 1]
4: Update

U = e (5D, £a, ()

5: end for

Define class of dynamics C such that

U €C Yk = x\O — x*
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A brief review

Discrete time: uses regret analysis
@ Hannan consistency: [5]
@ Hedge algorithm for two-player games: [4]

@ Online learning in games: [2]

Most studies prove the convergence of time-averaged strategies

_ % S0

T<t

[5] James Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97-139, 1957

References

[4] Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights.

Games and Economic Behavior, 29(1):79-103, 1999

[2] Nicold Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006
(-, FORCES
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Convergence of x(t) Vs convergence of x(t)

Routing game example

1 T T T T T T ; ;
— path po = (v,
— {--- pathp =
c
.2 ~
= N
© 5
3
o
[e]
a
0 2 . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
™
1 T T T T T T T T
—— path p = (
(qV] 0.8+ path p; o) |
c path pz2 = (vo,
Ke] 06 |
2 O
%’ T 04l i
a N /V\/\ A f \/\ \/\
[e] 0.2 H \ \/ \/ u
a
0 . . . . . . . . .

0 10 20 30 40 50 60 70 80 90 100

-

Figure: Population distributions

References
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Convergence of x(t) Vs convergence of x(t)

Routing game example

t ot
Path losses £, (xV)) 04, ()
— path po = (v, v5,01) ||
—_ -
c
.2 £
=R
& =
=]
(o
[e]
[a
2 ‘ ‘ ‘ ‘ — p‘ath Pn‘ ‘ ‘ 21 ‘ ‘ ‘ ‘ — x;atl! Pu‘ = (Uu-‘ Vs, Ul)‘
path p; 5
A - - - path py = (v, v1)
c 15 A 1.5
] T
0] B 4{- 4= St SR U I S T A S SR O N B N O S « o
= Y i 1 | s
(o
[e]
G- 05 L L L Il L L L Il L 05 L L L L L L L L L 1
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Figure: Path losses
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Contributions

For the class of convex potential games.
Discrete time:

° x(t) — X" for class of approximate replicator (AREP) dynamics [7]
o x(® — X* for class of distributed mirror descent (DMD) dynamics [9]

o x® — X~ for class of distributed stochastic mirror descent (DSMD)
dynamics [6]

[7] Walid Krichene, Benjamin Drighés, and Alexandre Bayen. On the convergence of no-regret
learning in selfish routing.
In 31st International Conference on Machine Learning (ICML). JMLR, 2014

[9] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent
dynamics.
In European Control Conference (ECC), accepted, 2015

[6] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
stochastic mirror descent and applications to distributed routing.
In Allerton Conference on Communication, Control and Computing, in preparation, 2015
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Convex potential

w

Assume that 3f convex on X = A™* x ... x A“*% such that

Via, F(x) = L4, ()

Then
X" =arg Min a4z ... xadk F(X)

is the set of Nash equilibria.

Write £(x) = Vf(x) = (La,(x), ..., La,(x))

32/54
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First order optimality conditions

Nash condition & ;

Yk, Vxa,, (Ca (x7), x4, —xa,) <0 & Vxe X, (U(x*),x" —x) <0

Figure: First order optimality conditions of the potential f
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Convergence of x(1)

Rﬁi = sup Z <xf:k) — XA, la, (X
XAkeA'Ak T<t

,?(ﬂ

[‘v’k, limsup “:" < 0] = x5 x*
t

34/54
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Convergence of x(t)

Cumulative regret

Rf‘a = sup Z <X54Tk) B XAk?‘e-Ak(X(T))>

XA ea T<t

Convergence of averages

®
[Vk, i :‘k < ] =0 5
t

References

f(x) eventually decreasing
4
f(x®) — *
I
x® 5 x*
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Replicator dynamics
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Replicator dynamics

Va € A, jit = % ({4, (x), Xa,) — ()

Every solution of the ODE (1) converges to the set of its stationary points.

[11] Jérgen W Weibull. Evolutionary game theory.
MIT press, 1997

[3] Simon Fischer and Berthold Vécking. On the evolution of selfish routing.
In Algorithms—ESA 2004, pages 323—-334. Springer, 2004 35/54

G FORCES

GYBER-PHYSICAL SYSTEMS



Introduction Convergence of agent dynamics Application to routing References
00000000 O00000@00000000 00000000

Approximate REPlicator update

Ea(x(t))) + U§t+1)

A D g ({4, (0,2

o (UW),>1 perturbations that satisfy for all T > 0,

lim Z U =0

T1200 73 E: 1 m< b

@ 7); discretization time steps.

[1] Michel Benaim. Dynamics of stochastic approximation algorithms
In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999
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Convergence to Nash equilibria

Under AREP updates, if : | 0 and Y 7 = oo, then

t) X

o Affine interpolation of x() is an asymptotic pseudo trajectory.

@ Use f as a Lyapunov function.
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Convergence to Nash equilibria

Under AREP updates, if : | 0 and Y 7 = oo, then

t) X

o Affine interpolation of x() is an asymptotic pseudo trajectory.

@ Use f as a Lyapunov function.
However, No convergence rates.

[8] Walid Krichene, Benjamin Drighés, and Alexandre Bayen. Learning nash equilibria in

congestion games.
SIAM Journal on Control and Optimization (SICON), to appear, 2014
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Mirror Descent [10]

minimize X

subjectto xe€ X C RY  convex, compact set

— f(=)
“ = S + (90, z - 2®)
1 @) 4+ (g e —2() 4 LDy (2, 2V)

38/54
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Mirror Descent [10]

minimize f(x) convex function

subjectto xe€ X C RY  convex, compact set

Algorithm 2 MD Method with learning rates (7;)
1: for t € N do
2 g eaf(x)
3: X = arg min < > + =Dy, (x, x (1))

xXEX
4: end for
. . — @)
¢ learning rate' D) 4 (@) — ()
Dy: Bregman divergence S f@®) 4 (oW 2~ 20) 4 LDy (@,2(9)

[10] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983

OIREER
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Distributed Mirror Descent with heterogeneous agents
Distributed convex optimization

minimize  f(x)

subjectto x € X= X1 x - x Xk

Algorithm 3 Distributed MD
1: for t € N do

(¥)

2: Agent k observes 8,
3: Update
1 . 1
xf;r ) argmin, , ex, <gf‘f2,x,4k - XSZ> + UTDM(XAMXSD
t
4: end for

@ Dy« and nk depends on k

SIss
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A true descent

Under mirror descent, f(3() — f*.

If f has L-Lipschitz gradient, and 7; | 0, then eventually,

FOY) < £(x©)

@)
- f@) (e — =)
S f@) + (9w = 2®) 4+ LDy (x,2®)

Figure: Mirror Descent iteration with decreasing 71

[9] Walid Krichene, Syrine Krichene, and Alexandre Bayen Convergence of mirror descent

dynamics. FQR
In European Control Conference (ECC cep

ER-PHYSICAL SYSTEMS
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A true descent

Under mirror descent, f(3() — f*.

If f has L-Lipschitz gradient, and 7; | 0, then eventually,

FOY) < £(x©)

@)
- f@) (e — =)
S f@) + (9w = 2®) 4+ LDy (x,2®)

Figure: Mirror Descent iteration with decreasing 71

[9] Walid Krichene, Syrine Krichene, and Alexandre Bayen Convergence of mirror descent

dynamics. FQR
In European Control Conference (ECC cep

ER-PHYSICAL SYSTEMS
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A true descent

Under mirror descent, f(3() — f*.

If f has L-Lipschitz gradient, and 7; | 0, then eventually,

FOY) < £(x©)

f(@)
- f@) (e - =)
- @)+ (90w =) 4 5Dy (2D

Figure: Mirror Descent iteration with decreasing 71

[9] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent

dynamics. FO R(;E}S

In European Control Conference (ECC,

cv ER-FHYSICAL SYSTEMS
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A true descent

Consequence:

Suppose f has L Lipschitz gradient. Then under the DMD class with 7; | 0
and > n: = oo,

f(X(t)) _ f-* -0 (Z‘r<t777' 4 i T 1)
t tne t
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A true descent

Consequence:

Suppose f has L Lipschitz gradient. Then under the DMD class with 7; | 0
and > n: = oo,

f(x(t))—f*:O M_FL_FE
t te |t

How robust is the convergence if losses are stochastic?
Players do not observe the true loss, but have an estimate /(x(*))

[9] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent
dynamics.
In European Control Conference (ECC), accepted, 2015
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Distributed Stochastic Mirror Descent (DSMD)

At iteration t
@ Have a stochastic vector ;;r(t)

o £ unbiased: E [g19|F 1] € 0f () as.
(F: natural filtration of (2())

S

FORCES
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Distributed Stochastic Mirror Descent (DSMD)

At iteration t
e Have a stochastic vector g(*

o £ unbiased: E [g19|F 1] € 0f () as.
(F: natural filtration of (2())

References

Algorithm 5 DSMD dynamics

1: for t € N do

2: Agent k observes gﬁfz
3: Update
1 . ~ 1
X.E4t:r ) = arg mmxAkEXk <gf4t1)<’XAk - Xf‘{;)<> + UTDU?‘((XAM
t
4: end for
Assume

0 3G>0st E [ug(f)ui] <GVt

S

FORCES
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Convergence of DSMD

Existing result: E[f(x)] — £*

@ All convex functions (including non-smooth)

X 2%

O] _ ex |Og t
E |:f(X )] f7=0 Xk: tmin(ag,1—ay)
@ Strongly convex functions

E [Du(x*,x¥)] = 0(3_ £7)
k

Rates are for nk = t‘i—kk, ax € (0,1)

[6] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
stochastic mirror descent and applications to distributed routing.
In Allerton Conference on Communication, Control and Computing, in preparation, 2015
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Application to the routing game

Figure: A strongly convex example.

o Centered Gaussian noise on edges.

o Population 1: Hedge with n} = 71

o Population 2: Hedge with n? = t™*
Hedge algorithm

o)
KD o Dt

) e
R

References
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Routing game with strongly convex potential

Application to routing
0@000000

References

() :
Mass distributions x,, Path losses £, (x*))
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Routing game with weakly convex potential
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Figure: A weakly convex example.
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Routing game with weakly convex potential
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Figure: Potential values.
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Summary

Convergence guarantees for distributed dynamics
o Under no-regret learning, (Y — A/
o Under AREP dynamics, x(f> 2N

Under DMD dynamics, x®) — A with rate O (L‘NT + =+ )

”7 t

Under Stochastic MD, x( 23 A/, and
EF(x9) = £ with rate O (¥, smaci=ay )

¢min(o,1—oy)

if potential is strongly convex, E Dy (x*, x()) — 0 with rate O(3", t~*¥)
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Applications
@ Distributed machine learning

o Used as a model for optimal control of potential games
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Applications

@ Distributed machine learning

o Used as a model for optimal control of potential games
Ongoing and future work

o Efficient Bregman projections (CDC 2015)

@ Learning on a Continuum (NIPS 2015)

o Fitting of the learning model to observed dynamics
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Thank you
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