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Project status within FORCES scope

Framework for cybersecurity of physical infrastructure
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Cesar Cerrudo in downtown New York City, 
conducting field test of vulnerable traffic 
sensors. Photo: Courtesy of Cesar Cerrudo
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Presented at the previous FORCES all 
hands

Framework for cybersecurity of physical infrastructure
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Presented at the previous FORCES all 
hands

Our 
Solution:

Connected 
Corridors 

(CC)High-fidelity 
simulation 
software 
(C2WT)

+

Well-managed and resilient traffic flows

Attack on the sensing infrastructure, and the control 
infrastructure
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Presented at the this FORCES all hands

How do humans learn from attacks / ops / to protect / attack 
performance of the system
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Context: (non-)collaborative players

Commonly spread ansatz about decision making in routing: if 
you reduce your own travel time, you help the public good.

14/54



Page ‹#›

Context: (non-)collaborative players

Commonly spread ansatz about decision making in routing: if 
you reduce your own travel time, you help the public good.

15/54



Page ‹#›

Context: (non-)collaborative players

Commonly spread ansatz about decision making in routing: if 
you reduce your own travel time, you help the public good.

16/54



Page ‹#›

Context: (non-)collaborative players

Reality: without optimal coordination, users experience the 
difference between social optimal and Nash

17/54



Page ‹#›

Context: (non-)collaborative players

Reality: without optimal coordination, users experience the 
difference between social optimal and Nash

18/54



Page ‹#›

Context: (non-)collaborative players

Reality: without optimal coordination, users experience the 
difference between social optimal and Nash

19/54



Page ‹#›

Context: (non-)collaborative players

Reality: without optimal coordination, users experience the 
difference between social optimal and Nash

20/54



Page ‹#›

$20.8 Billion dollar question

Annual cost of congestion: $20.8B (TTI Urban Mob. Rep. 2012)
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Problem set up: one  shot / repeated 
game

N players are routing traffic 
 Private sector apps (Google, Waze, Apple, INRIX etc.) 
 Some public sector apps (511) 
  
Except some specific public agencies, none of these players are 
solving for social optimal solutions. 
!
At best, all of these are providing  Nash solutions, i.e. routes in 
which each user has no incentive to change his/her trajectory. 
!
What if companies “learned” from the past?
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Problem set up: one  shot / repeated 
game

Structure of a learning game: 
!
!
!
!
!
!
1) Make choice (route) 
2) Perform action (drive the route) 
3) Compare outcome with external information 
4) Learn (for next action)
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Interaction of K decision makers

Decision maker k faces a sequential decision problem
At iteration t

(1) chooses probability distribution x
(t)
Ak

over action set Ak

(2) discovers a loss function `(t)
Ak

: Ak → [0, 1]
(3) updates distribution

Environment

Agent k

outcome
`

(t)
Ak

learning algorithm
x

(t+1)
Ak

= u
(
x

(t)
Ak
, `

(t)
Ak

)

Figure: Sequential decision problem.

Loss of agent k affected by strategies of other agents.
Does not know this function, only observes its value.
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Convergence to equilibria

Can we guarantee x (t) → X ∗? Can players arrive to equilibrium?
x(t) = (x

(t)
A1
, . . . , x

(t)
AK

)

X ∗ set of equilibria.

Convergence rates?

Robustness to stochastic perturbations?
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Examples of decentralized decision makers

Routing game

Player drives from source to destination node

Chooses path from Ak

Mass of players on each edge determines cost on that edge.

2 3

0 1

4

5

6

Figure: Routing game
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Online learning model: illustration

x
(t)
A1
∈ ∆A1 Sample a ∼ x (t) Discover `(t)

A1
∈ [0, 1]A1 Update x

(t+1)
A1
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Convergence of distributed learning

1: for t ∈ N do
2: Each agent k plays x (t)

Ak
(independently)

3: Reveal loss vector `Ak (x (t)) ∈ [0, 1]Ak

4: Update

x
(t+1)
Ak

= uk
(
x

(t)
Ak
, `Ak (x (t))

)
5: end for

Main problem

Define class of dynamics C such that

uk ∈ C ∀k ⇒ x (t) → X ∗
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A brief review

Discrete time: uses regret analysis

Hannan consistency: [5]

Hedge algorithm for two-player games: [4]

Online learning in games: [2]

Most studies prove the convergence of time-averaged strategies

x̄ (t) =
1
t

∑
τ≤t

x (τ)

[5] James Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97–139, 1957

[4] Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1):79–103, 1999

[2] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006
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Convergence of x̄ (t) Vs convergence of x (t)

Routing game example

P
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Convergence of x̄ (t) Vs convergence of x (t)

Routing game example

Path losses `Ak (x (t)) `Ak (x̄ (t))

P
op

ul
at
io
n
1

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

τ

ˆ̀ p
(x

(τ
)
)

path p0 = (v0, v5, v1)

path p1 = (v0, v4, v5, v1)

path p2 = (v0, v1)

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

τ

ˆ̀ p
(x

(τ
)
)

path p0 = (v0, v5, v1)

path p1 = (v0, v4, v5, v1)

path p2 = (v0, v1)

P
op

ul
at
io
n
2

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

τ

ˆ̀ p
(x

(τ
) )

path p0 = (v0, v5, v1)

path p1 = (v0, v4, v5, v1)

path p2 = (v0, v1)

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

τ

ˆ̀ p
(x

(τ
) )

path p0 = (v0, v5, v1)

path p1 = (v0, v4, v5, v1)

path p2 = (v0, v1)

Figure: Path losses



31/54

Introduction Convergence of agent dynamics Application to routing References

Contributions

For the class of convex potential games.
Discrete time:

x (t) → X ∗ for class of approximate replicator (AREP) dynamics [7]

x (t) → X ∗ for class of distributed mirror descent (DMD) dynamics [9]

x (t) → X ∗ for class of distributed stochastic mirror descent (DSMD)
dynamics [6]

[7] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. On the convergence of no-regret
learning in selfish routing.
In 31st International Conference on Machine Learning (ICML). JMLR, 2014

[9] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent
dynamics.
In European Control Conference (ECC), accepted, 2015

[6] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
stochastic mirror descent and applications to distributed routing.
In Allerton Conference on Communication, Control and Computing, in preparation, 2015
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Convex potential

Convex potential

Assume that ∃f convex on X = ∆A1 × · · · ×∆AK such that

∇xAk
f (x) = `Ak (x)

Then
X ∗ = argminx∈∆A1×···×∆AK f (x)

is the set of Nash equilibria.

Write `(x) = ∇f (x) = (`A1(x), . . . , `AK (x))
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First order optimality conditions

Nash condition ⇔ first order optimality
∀k, ∀xAk ,

〈
`Ak (x∗), x∗Ak

− xAk

〉
≤ 0 ⇔ ∀x ∈ X , 〈`(x∗), x∗ − x〉 ≤ 0

x

X

x∗

∇f(x∗) = `(x∗)

Figure: First order optimality conditions of the potential f
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Convergence of x̄ (t)

Cumulative regret

R
(t)
Ak

= sup
xAk
∈∆Ak

∑
τ≤t

〈
x

(τ)
Ak
− xAk , `Ak (x (τ))

〉

Convergence of averages[
∀k, lim sup

t

R
(t)
Ak

t
≤ 0

]
⇒ x̄ (t) → X ∗

Sufficient condition for (x (t))t → X ∗

f (x (t)) eventually decreasing
⇓

f (x (t))→ f ∗

⇓
x (t) → X ∗
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Replicator dynamics

Replicator equation [11]

∀a ∈ Ak ,
dxa
dt

= xa (〈`Ak (x), xAk 〉 − `a(x)) (1)

Theorem: [3]

Every solution of the ODE (1) converges to the set of its stationary points.

[11] Jörgen W Weibull. Evolutionary game theory.
MIT press, 1997

[3] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing.
In Algorithms–ESA 2004, pages 323–334. Springer, 2004
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Approximate REPlicator update

Discretization of the continuous-time replicator dynamics

x (t+1)
a − x (t)

a = ηtx
(t)
a

(〈
`Ak (x (t)), x

(t)
Ak

〉
− `a(x (t))

)
+ ηtU

(t+1)
a

(U(t))t≥1 perturbations that satisfy for all T > 0,

lim
τ1→∞

max
τ2:

∑τ2
t=τ1 ηt<T

∥∥∥∥∥
τ2∑

t=τ1

ηtU
(t+1)

∥∥∥∥∥ = 0

ηt discretization time steps.

[1] Michel Benaïm. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999
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Convergence to Nash equilibria

Theorem [8]

Under AREP updates, if ηt ↓ 0 and
∑
ηt =∞, then

x (t) → X ∗

Affine interpolation of x (t) is an asymptotic pseudo trajectory.

x(0)

Φt0(x(0))

x(1) Φtk−2
(x(k−2))

x(k−1)

x(k)

Φtk−1
(x(k−1))

Use f as a Lyapunov function.
However, No convergence rates.

[8] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. Learning nash equilibria in
congestion games.
SIAM Journal on Control and Optimization (SICON), to appear, 2014
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Mirror Descent [10]

minimize f (x) convex function

subject to x ∈ X ⊂ Rd convex, compact set

Algorithm 1 MD Method with learning rates (ηt)

1: for t ∈ N do
2: g (t) ∈ ∂f (x (t))

3: x (t+1) = arg min
x∈X

〈
g (t), x

〉
+ 1

ηt
Dψt (x , x

(t))

4: end for

ηt : learning rate
Dψ: Bregman divergence

f(x(t))

f(x(t+1))

f(x)

f(x(t)) + 〈g(t), x− x(t)〉

f(x(t)) + 〈g(t), x− x(t)〉 + 1
ηt
Dψ(x, x(t))

[10] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
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Distributed Mirror Descent with heterogeneous agents

Distributed convex optimization

minimize f (x)

subject to x ∈ X= X1 × · · · × XK

Algorithm 3 Distributed MD
1: for t ∈ N do
2: Agent k observes g (t)

Ak

3: Update

x
(t+1)
Ak

= argminxAk
∈Xk

〈
g

(t)
Ak
, xAk − x

(t)
Ak

〉
+

1
ηkt

Dψk (xAk , x
(t)
Ak

)

4: end for

Dψk and ηkt depends on k
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A true descent

Under mirror descent, f (x̄ (t))→ f ∗.

A true descent [9]

If f has L-Lipschitz gradient, and ηt ↓ 0, then eventually,

f (x (t+1)) ≤ f (x (t))

f(x(t))

f(x(t+1))

f(x)

f(x(t)) + 〈g(t), x− x(t)〉

f(x(t)) + 〈g(t), x− x(t)〉 + 1
ηt
Dψ(x, x(t))

Figure: Mirror Descent iteration with decreasing ηt

[9] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent
dynamics.
In European Control Conference (ECC), accepted, 2015
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A true descent

Consequence:

Theorem: Convergence of DMD [9]

Suppose f has L Lipschitz gradient. Then under the DMD class with ηt ↓ 0
and

∑
ηt =∞,

f (x (t))− f ∗ = O

(∑
τ≤t ητ

t
+

1
tηt

+
1
t

)

How robust is the convergence if losses are stochastic?
Players do not observe the true loss, but have an estimate ˆ̀(x (t))

[9] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent
dynamics.
In European Control Conference (ECC), accepted, 2015
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Distributed Stochastic Mirror Descent (DSMD)

At iteration t

Have a stochastic vector ĝ (t)

ĝ (t) unbiased: E
[
ĝ (t)|Ft−1

]
∈ ∂f (x (t)) a.s.

(Ft natural filtration of (ĝ (t)))

Algorithm 4 DSMD dynamics
1: for t ∈ N do
2: Agent k observes ĝ (t)

Ak

3: Update

x
(t+1)
Ak

= argminxAk
∈Xk

〈
ĝ

(t)
Ak
, xAk − x

(t)
Ak

〉
+

1
ηkt

Dψk (xAk , x
(t)
Ak

)

4: end for

Assume
∃G > 0 s.t. E

[
‖ĝ (t)‖2∗

]
≤ G ∀t
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ĝ

(t)
Ak
, xAk − x

(t)
Ak

〉
+

1
ηkt

Dψk (xAk , x
(t)
Ak

)

4: end for

Assume
∃G > 0 s.t. E

[
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Convergence of DSMD

Existing result: E[f (x̄ (t))]→ f ∗

Our results

All convex functions (including non-smooth)

x (t) a.s.→ X ∗

E
[
f (x (t))

]
− f ? = O

(∑
k

log t
tmin(αk ,1−αk )

)
Strongly convex functions

E
[
Dψ(x?, x (t))

]
= O(

∑
k

t−αk )

Rates are for ηkt = θk
tαk , αk ∈ (0, 1)

[6] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
stochastic mirror descent and applications to distributed routing.
In Allerton Conference on Communication, Control and Computing, in preparation, 2015
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Application to the routing game

2 3

0 1

4

5

6

Figure: A strongly convex example.

Centered Gaussian noise on edges.

Population 1: Hedge with η1
t = t−1

Population 2: Hedge with η2
t = t−1

Hedge algorithm

x
(t+1)
Ak

∝ x (t)
a e−ηt`

(t)
a
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Routing game with strongly convex potential

Mass distributions x (t)
Ak

Path losses `Ak (x (t))
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Routing game with strongly convex potential

Mass distributions E x
(t)
Ak
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Routing game with strongly convex potential

100 101 102
10−4

10−3
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10−1

100

101

τ

E
[ D

K
L
(x
?
,x

(τ
)
)]

η1t = t−1, η2t = t−1

Figure: Distance to equilibrium.
For ηkt = θk

`f t
αk , αk ∈ (0, 1], E

[
Dψ(x?, x(t))

]
= O(

∑
k t
−αk )
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Routing game with weakly convex potential

0

1

2 3 4

Figure: A weakly convex example.
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Routing game with weakly convex potential
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Figure: Potential values.
For θk

tαk , αk ∈ (0, 1), E
[
f (x(t))

]
− f ? = O

(∑
k

log t

tmin(αk ,1−αk )

)
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Routing game with weakly convex potential
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For θk

tαk , αk ∈ (0, 1), E
[
f (x(t))
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− f ? = O
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log t

tmin(αk ,1−αk )
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Routing game with weakly convex potential

100 101 102
10−6

10−5

10−4

10−3

10−2

τ

E
[ f

(x
(τ

)
)]
] −

f
∗

η1t = t−.3, η2t = t−.4

η1t = t−.5, η2t = t−.5

Figure: Potential values.
For θk

tαk , αk ∈ (0, 1), E
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Routing game with weakly convex potential
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Summary

Convergence guarantees for distributed dynamics

Under no-regret learning, x̄ (t) → N
Under AREP dynamics, x (t) a.s.→ N

Under DMD dynamics, x (t) → N with rate O
(∑

τ≤t ητ

t
+ 1

tηt
+ 1

t

)
Under Stochastic MD, x (t) a.s.→ N , and
E f (x (t))→ f ∗ with rate O

(∑
k

log t

tmin(αk ,1−αk )

)
if potential is strongly convex, EDψ(x∗, x (t))→ 0 with rate O(

∑
k t
−αk )
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Applications

Distributed machine learning

Used as a model for optimal control of potential games

Ongoing and future work

Efficient Bregman projections (CDC 2015)

Learning on a Continuum (NIPS 2015)

Fitting of the learning model to observed dynamics
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Applications

Distributed machine learning

Used as a model for optimal control of potential games

Ongoing and future work

Efficient Bregman projections (CDC 2015)

Learning on a Continuum (NIPS 2015)

Fitting of the learning model to observed dynamics
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Thank you
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