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(Recent) Cyber Attacks Against Cyber 
Physical Systems
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Hackers caused 
power cut in 
western Ukraine

12 January  

2016

28 March,  

2016

Google Tool
Aided N.Y. Dam
Hacker
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Intrusion Detection Systems
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Monitor a system for malicious activity

 When a malicious activity is detected, the IDS raises an alarm which can be 
investigated by operators.

For example

 By detection suspicious system call sequences

 By monitoring system files for modifications

Challenges

 Practical IDS are imperfect

might not detect attacks that do 
not result in “sufficient 

suspicious” activity

might raise false alarms for 
unusual but non-malicious 

activities.
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Configuration of IDS
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 Finding an optimal detection threshold can prove to be a challenging 
problem even for a single IDS.

 Much more challenging when IDS are deployed  on multiple  computer 
systems that are interdependent with respect to the damage that could be 
caused by compromising hem.

Water distribution networks

Computer 
systems

Physical
targets
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Objective
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We study the problem of finding detection 
thresholds for multiple IDS in the face of 

strategic attacks.

Aron Laszka, Waseem Abbas, S. Shankar Sastry, Yevgeniy Vorobeychik, and Xenofon Koutsoukos. 2016. Optimal thresholds for intrusion 
detection systems. In Proceedings of the Symposium and Bootcamp on the Science of Security (HotSos '16). ACM, New York, NY, USA, 72-81.
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• Introduction and Motivation

• Model of attacker and defender

• Attacker Defender game

• Best response attack

• Optimal Intrusion detection thresholds

• Numerical Evaluation

• Optimizing Thresholds for Time-Dependent Damage

• Future Directions

Outline

3/1/2017
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• Investigation of an alarm on system s cost, Cs.

• IDS are imperfect

• False negative probability: fs

• False positive rate: FP(fs)

System Model

3/1/2017

Detection threshold

Too many false 
alarms

Alarms not raised for 
actual attacks

False positive 
errors

False negative 
errors

fs

FP
(f

s)
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 An attacker could attack a subset of 
systems, A  S

 The defender will detect the attack if the 
IDS of at least one targeted system raises 
an alarm.

 Probability that attack against systems in A
is not detected is 

 An undetected attack will enable the 
attacker to cause damage

System Model

3/1/2017

Computer systems

Physical targets
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Attacker-Defender Game
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Strategic Choices:

Defender’s Loss:

Attacker’s payoff:

Defender: 
Select false-negative probability fs

for each system.

Attacker: 
Select a subset A of 
systems to attack.
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 Attacker knows defender’s algorithm, implementation etc.

 The defender cannot respond to the attacker's strategy, and 
must choose her strategy anticipating that the attacker will play 
a best response.

Attacker-Defender Game

3/1/2017

Best Response Attack: Defender’s Optimal Strategy
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Best Response Attack
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Theorem:

Given an instance of the model and configuration for the IDS,
determining whether there exists an attack that causes at least
a certain amount of damage is an NP-hard problem.

* Using reduction from a well-known NP-hard problem, the Maximum 
Independent Set Problem.

* In other words, it is computationally challenging even to determine 
how resilient a given configuration is.
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Greedy Heuristic for Best Response Attack
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Basic idea: 
In each iteration, choose an 
element from S\A that 
maximally increases the 
attacker's payoff.

Proposition: 

For any k>0, there is an instant of best response attack such that 

Where AG is output of greedy heuristic and A* is the best response attack. 
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Heuristics for Intrusion Detection Thresholds
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• Simulated Annealing 
based polynomial time 
meta-heuristic.

• Iterative improvements until 
convergence.
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 Uniform Threshold Strategy:

• All systems are assigned the same false negative probability, 
i.e., fs = f, for all s in S. 

• The value of f is chosen to minimize the defender’s loss

 Locally Optimum Strategy:

• For each system s, fs is individually optimized.

• For each s, fs is chosen to minimize

Baseline Strategies for Comparison

3/1/2017
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 Leakages in Water Distribution Networks:

• Leakages in water distribution networks can cause significant 
losses and third-party damage

• Pressure sensors can detect “nearby” pipe bursts

Numerical Illustration – Water Dist. Network

3/1/2017



Page 16

 Leakages in Water Distribution Networks:
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 Leakages in Water Distribution Networks:

• Leakages in water distribution networks can cause significant 
losses and third-party damage

• Pressure sensors can detect “nearby” pipe bursts

Numerical Illustration – Water Dist. Network

3/1/2017

• Attacker may tamper with sensors to cause damage

• IDSs can be deployed on the sensors to detect cyber-attacks
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Numerical Illustration – Water Dist. Network
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Water Network:

• 168 pipes and 126 nodes

• A sensor monitors pipes that are 
at most D = 3 distant from the 
sensing node.

• 18 sensors are sufficient to 
monitor the whole network.

Ostfeld et al. J. Water Resources Planning and Management, 2008.

• S : set of sensors that need to be defended.

• D(A): number of pipes monitored by the sensors in A.

• Cs: cost of investigating a false alarm on sensor s.
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 As an example, we use the ADFA-LD dataset to train an IDS that 
monitors system-call sequences

False Positive and False Negative Error Rates

3/1/2017

Figure: Attainable false-positive and false-negative error rates (i.e., fractions of
misreported normal and attack traces, respectively) of the IDS for various
sequence lengths.
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 Comparison Between Best-Response Attacks and the Output of Algorithm 1

Greedy Attack vs. Best Response Attack

3/1/2017

n
Fraction of instance where
greedy and best-response
payoffs are equal

Worst case ratio between
greedy and best-response
payoffs

2 100 % 100 %

3 99.9 % 97.99 %

4 99.5 % 93.41 %

5 98.2 % 86.03 %

6 98.1 % 85.62 %

7 96.1 % 75.27 %

8 94.9 % 82.72 %

9 95.2 % 82.7 %

10 95.7 % 77.32 %

* Greedy heuristics provide a good way to approximate the best response 
attacks for practical purposes.
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Convergence of Algorithm
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Numerical Results - Comparisons
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Comparison of 
proposed algorithm 
with uniform 
threshold and locally 
optimum threshold 
strategies.
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Numerical Results - Comparisons
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Defender's loss using three different strategies (uniform, locally optimal, and 
our Algorithm) as a function of the cost of false alarms.
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 In CPS, the expected damage 
incurred from undetected attacks 
varies by time, and depends on 
the state of the physical systems

 There is the need to incorporate 
the dynamic behavior in 
computing optimal thresholds 
when facing strategic attackers

Time-Dependent Damage

3/1/2017
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 System's time horizon of interest, .

 Attack period, . 

 Damage function represents the expected 
damage    incurred to a CPS from an undetected attack at 
time    .        .

 Expected total damage represents the expected damage 
from an undetected attack in a period   .

System Model

3/1/2017
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 Sequential change detection: tradeoff between false alarm rate 
and detection delay

 Threshold: 

 Detection delay: ()

 False positive rate: FP()

Sequential Change Detection

3/1/2017

Detection threshold

Too many false 
alarms

Too much detection 
delay

False positive 
errors

Detection delay

()
FP

(
)
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Attacker-Defender Game
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Strategic Choices:

Defender’s Loss:

Attacker’s payoff:

Defender: 
Select threshold  for the 
detector.

Attacker: 
Select a time ka to start 
an attack.
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 Reduce detector's sensitivity during less critical periods and 
increase sensitivity during more critical periods

 Significantly decreases the defender's loss

 Adaptive threshold    represents a set of pairs 
where is a threshold change time,      is a 

corresponding threshold value, .

 Expected detection delay changes as threshold 
changes.

Adaptive Threshold

3/1/2017
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Adaptive Threshold Game

3/1/2017

Strategic Choices:

Defender’s Loss:

Attacker’s payoff:

Defender: 
Select threshold schedule  for 
the detector.

Attacker: 
Select a time ka to start 
an attack.
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Water Distribution System Example
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 Detectors installed on a pressure sensing devices

 Attacker alters sensor measurements

 Damage is a function of demand pattern
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Numerical Results
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 Optimal Threshold and Best-Response Attack

Fixed Threshold Adaptive Threshold
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 Adaptive threshold reduces the defender's loss by almost 40%.

Numerical Results

3/1/2017
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Conclusions and Future Directions
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* By taking into account the characteristics of the physical processes 
controlled by the computational elements, we can

* Increase the probability of detecting cyber-attacks

* Decrease losses due to cyber-attacks and false alarms

* In future, we would like to incorporate 

* Multiple systems: Different time-varying damage for each subsystem 

* Hypothesis testing: Tradeoff between false alarm rate, missed detection 
rate, and detection delay

* Moving target defense techniques based on randomized thresholds


