Stealthy Epidemics: Modeling Worm Attacks against CPS

Aron Laszka ${ }^{1}$

in collaboration with Nika Haghtalab², Ariel Procaccia², Yevgeniy Vorobeychik ${ }^{1}$, and Xenofon Koutsoukos ${ }^{1}$
${ }^{1}$ Vanderbilt University, ${ }^{2}$ Carnegie Mellon University

71-5 Massachusetts
Institute of
Technology
v
VANDERBILT
UNIVERSITY

Motivation

* Highly sensitive systems, such as CPS for critical infrastructure, are usually supposed to be secured by the "air gap"
* However, computer worms that propagate over local networks and removable drives may infect even these systems
* e.g., Stuxnet infected Iranian nuclear facilities

Examples of Worm-Based Attacks \#1

* Stuxnet worm
* targeted Iranian uranium enrichment facilities
* initially sent to companies working on industrial control systems in Iran
* propagated over local area networks and removable drives
* drastically reduced the lifetime and reportedly ruined almost one-fifth of Iran's nuclear centrifuges
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11

Examples of Worm-Based Attacks \#2

* Shamoon worm
* targeted energy companies in the Middle East, including Saudi Aramco and Qatar's RasGas
* initially deployed on an Internet connected computer at Saudi Aramco
* removed and overwrote information on hard drives
* incapacitated 30,000 to 55,000 workstations at Saudi Aramco
http://www.bbc.com/news/technology19293797

Resilience to Worm-Based Attacks

* To stop a worm, we can
* create antivirus signatures
* patch vulnerabilities
* However, before we can implement these countermeasures, we first have to detect the worm
* Furthermore, it is imperative that we detect the worm in time * worm detection and alerting operators take some time * implementing countermeasures takes some time
> Attack-resilience depends on the timely detection of worms

Previous Work on Modeling Worms

* Mostly based on epidemic and influence maximization models
* primarily concerned with steady or equilibrium states
* Generally, they do not consider the detection problem
* in practice, a worm can be eradicated once it has been discovered
* steady or equilibrium state might not be reached by the time of detection
* More importantly, they do not consider targeted attacks
* usual assumption is that the worm is trying to infect as many computers as possible
* targeted worms may try to be stealthy to avoid early detection

Non-Targeted Worm Example: Code Red (2001)

Targeted Worm Example: Flame (2012)

Outline

* Model

* Results
* computing the probability of detection
* optimal assignment of resources to detection

Non-strategic attacks
Strategic attacks

Network Model

* Directed graph $G=(V, E)$
* node = computer system (or tightly coupled group of computers that can be infected together)
* edge = possible infections
* e.g., local area connections, regularly shared removable drives
* weight = probability of propagation

Propagation Models

* Time
* at the beginning, only the initial nodes are infected
* in each time step, additional nodes may be infected
* Independent cascades model
* nodes that were infected in the previous round may infect their neighbors
* Repeated independent cascades model
* nodes that are infected may infect their neighbors
$\mathrm{t}=$ =

Monitored Nodes

* Monitored nodes
* in order to detect worms, a defender monitors some nodes
* e.g., performing thorough audits
* since monitoring is costly, at most k nodes can be monitored
* furthermore, the set of nodes that can be monitored is restricted
* e.g., nodes that are not operated by the defender cannot be monitored
* Delayed detection
* mitigation is successful if the worm reaches a monitored node m at least D_{m} time steps before it reaches the target (or if it never reaches the target)

Problem Formulation

* Goal:

select a set of k monitored nodes M that maximizes the probability of detection $U(M)$

* Formulations
* non-strategic attacks: fixed set of initial nodes
* e.g., nodes that are connected to the Internet
* strategic attacks: set of initial nodes is chosen by an attacker, who wants to minimize the probability of detection
* set of possible initial nodes S is restricted (e.g., nodes that are connected to the Internet)

Selection Example

Selection Example

* Monitoring budget: $k=2$
set of possible monitored nodes

Selection Example

* Monitoring budget: $k=2$
* Detection delay: $D=\boldsymbol{1}$

Computing the Probability of Timely Detection

Computing the probability of detection $U(M)$ for a given set of monitored nodes M is a \#P-hard problem.

* \#P is the set of counting problems associated with the decision problems in the set NP
* However, we can use simulations
* error can be bounded using Hoeffding's inequality

Optimal Monitoring against Non-Strategic Attacks

* Non-strategic = fixed set of initial nodes for the worm
* Computational complexity:

> Finding a $(1-1 / e+o(1))-$ approximately optimal monitored set is $N P$-hard.

Optimal Monitoring against Non-Strategic Attacks

* Non-strategic = fixed set of initial nodes for the worm
* Computational complexity
* Approximation:

The probability $U(M)$ is a non-decreasing submodular set function of M.

For any $\varepsilon, \delta>0$, a greedy algorithm running in time poly $(|V|$, $1 / \varepsilon, \ln (1 / \delta))$ returns a set M such that with probability $1-\delta$,

$$
U(M) \geq(1-1 / e) U(O P T)-\varepsilon .
$$

Numerical Results for Non-Strategic Attacks

B-A graphs with 3 node clique and 3 edges per new node.

E-R graphs with 0.5 edge presence probability.

Randomly generated graphs with 100 nodes, 5 randomly chosen initial nodes, 10 randomly chosen possible monitored nodes, 1 randomly chosen target node, all edges having propagation probability 0.5 , independent cascades propagation model, and 1 time step detection delay. Values are averages taken over 10 graphs.

Optimal Monitoring against Strategic Attacks

* Strategic attacks = worst-case set of initial nodes for the worm
* Computational complexity:

For any ε, finding a set M of size at most $(1-\varepsilon) \ln (|S|)$ such that

$$
U(M) / U(O P T)>0
$$

is NP-hard.

Optimal Monitoring against Strategic Attacks

* Strategic attacks = worst-case set of initial nodes for the worm
* Computational complexity
* Approximation:

For any $\varepsilon, \gamma, \delta>0$, we can find a set M in time poly $(|V|, 1 / \varepsilon, 1 / \gamma, \ln (1 / \delta))$ such that $|M| \leq|S| k \ln (1 / \varepsilon)$ and with probability $1-\delta$,

$$
U(M) \geq(1-1 / e) U(O P T)-\gamma .
$$

* algorithm: iterate over the set of possible initial nodes, and for each node s, select $k \ln (1 / \varepsilon)$ monitored nodes in a greedy manner supposing that the attacker will select $\{s\}$ as the set of initial nodes

Numerical Results for Strategic Attacks

B-A graphs with 3 node clique and 3 edges per new node.

E-R graphs with 0.5 edge presence probability.

Randomly generated graphs with 100 nodes, 5 randomly chosen possible initial nodes, 10 randomly chosen possible monitored nodes, 1 randomly chosen target node, all edges having propagation probability 0.5 , independent cascades propagation model, and 1 time step detection delay. Values are averages taken over 10 graphs.

Conclusion

* Computer worms pose a serious threat to critical CPS
* In order to be resilient to such attacks, we have to be able to detect worms in time
* Selection of monitored nodes must be carefully planned
* Computational results
* challenging, but can be solved
* Open problem: finding an optimal attack
* NP-hard
* but can we approximate it efficiently?

Thank you for your attention!

Questions?

