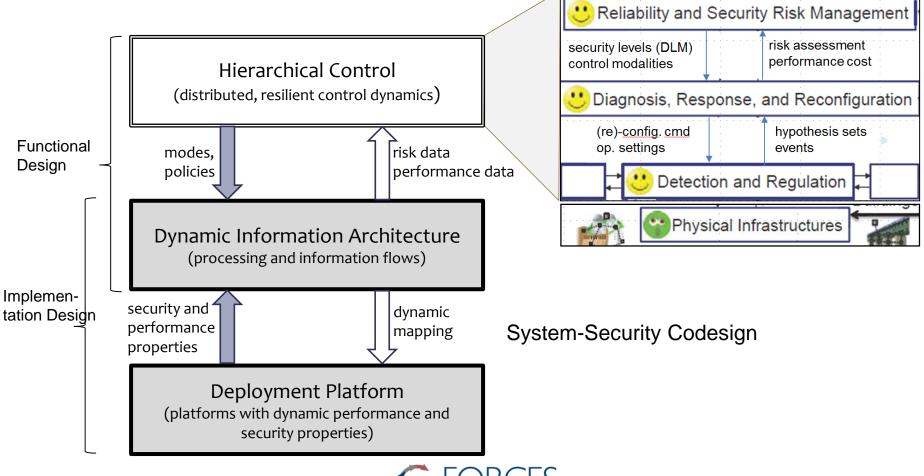


Progress Towards System-Security Co-design

Janos Sztipanovits David Lindecker ISIS-Vanderbilt

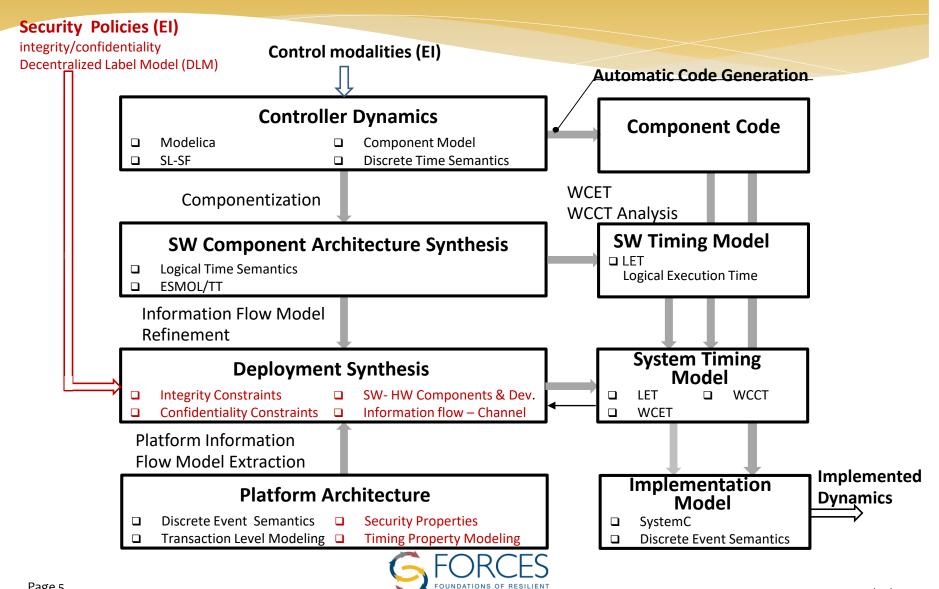
1. Goals

- 2. Decentralized Label Model
- 3. Formal Framework
- 4. System-level Synthesis Framework
- 5. Next Steps


What Is Our Goal?

* The traditional system-level synthesis problem for the "cyber" side of CPS:

- Derive specification for the behavior of the system components that will be implemented using networked computing
- Derive a functional model for the information architecture and componentize the system
- Select computing/networking platform
- Derive deployment model assigning components of the information architecture to processing and communication platforms
- Generate code for software components and derive WCET and WCCT
- Perform timing analysis
- * Making security part of system-level co-design
 - Mitigation of security vulnerabilities cost performance, timing, even functionality
 - Our goal is to address security requirements as part of the design trades embedded in the system-level design process



Co-design Problem in FORCES

Design Flow

CYBER-PHYSICAL SYSTEMS

Challenges

- Modeling language suite (behavior, information flows, SW components, architecture, timing, platform, deployment) - reuse previous work
- * Security Requirement Modeling (need to be composable with other modeling aspects)
- * Common Semantic Domain and Formal Framework (functional, performance and security models need to be anchored to a semantic domain suitable for synthesis)
- Synthesis Framework and Co-design flow (mapping system-level synthesis problem on the formal framework and tools)
- Integrated Tool Suite and Validation

 (target domain rich enough for testing the co-design tool suite)

- 1. Goals
- 2. Decentralized Label Model
- 3. Formal Framework
- 4. System-level Synthesis Framework
- 5. Next Steps

Security Concerns Addressed

* Integrity attacks

- Manipulate data (value, timestamp, source identity,..)

Confidentiality attack

- Leak critical data to unauthorized persons/systems

 Integrity and confidentiality restrictions impose constraints on information flows.

- How to model these restrictions?
- How to integrate these restrictions with others (functional and timing) and formulate a co-design problem?

Decentralized Label Model (DLM) for Information Flow Control

- * Myers, Liskov (1997): Introduced security-typed languages by labeling variables with information flow security policies
- * Method was developed for programming languages, the result is *Jif, a security-typed version of Java*.
- * DLM provides mechanism for static/dynamic type checking of security labels in information flows to detect policy violations.
- * Example: *Jif*, a security-typed version of Java

DLM Concepts

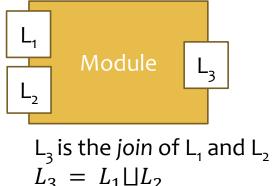
- * New semantic concepts introduced:
 - Principles that represent authority entities.
 - Labels expressing security classes encountered in most information flow models.
 - *Policies* that are elementary security primitives used in *labels*.
 - Labeled entities that have attached labels, such as values, slots (variables, objects, i/o channels). Copies of values can be relabeled, slots cannot.
 - Operators that can relabel or declassify values in information flows.
- * The model can be naturally applied to system-level information flow modeling languages by assigning security types to input/output ports

Working With Security Labels

- Labels contain a set of policies. Each policy includes an owner and a set of readers allowed by the owner. The effective reader set for a label is the intersection of every reader set in it.
 L = {o₁: r₁, r₂; o₂: r₂, r₃}
- Processing blocks running under the authority of an owner can declassify the owner's policy by adding readers.

$$L_{1} \qquad Module_{1} \qquad L_{2}$$

$$L_{1} = \{o_{1}: r_{1}, r_{2}; o_{2}: r_{2}, r_{3}\} \qquad L_{2} = \{o_{1}: r_{1}, r_{2}, r_{3}, ; o_{2}: r_{2}, r_{3}\}$$


Propagation Rules

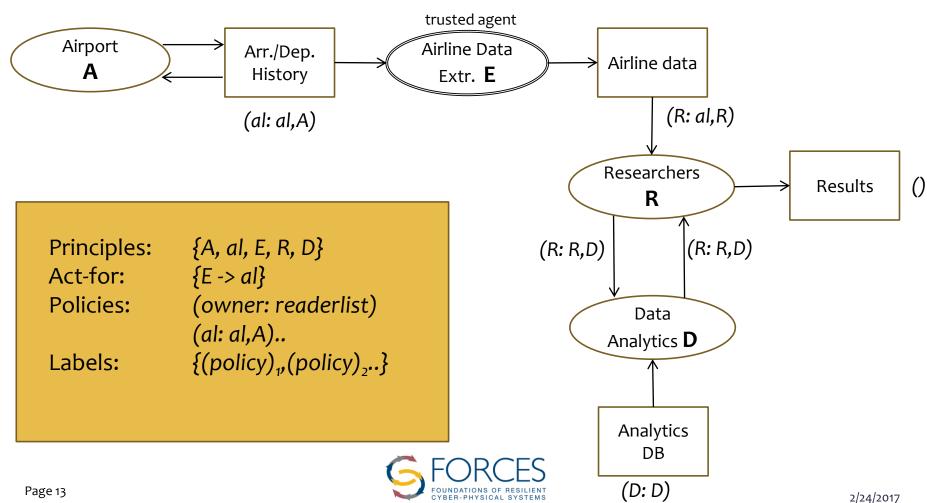
* Propagation rule-1 (restriction):

odule₁
$$L_1 \xrightarrow{\text{inherits}} \underbrace{L_1}_{\text{value}} \xrightarrow{\text{relabels}}_{L_1} \underbrace{L_2}_{\text{value}} Module_2$$

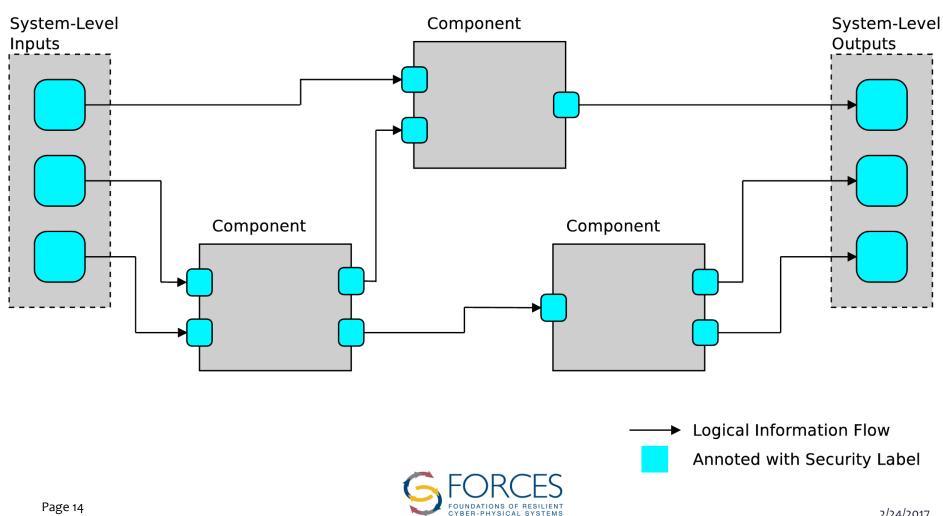
 $owners(L_1) \subseteq owners(L_2)$

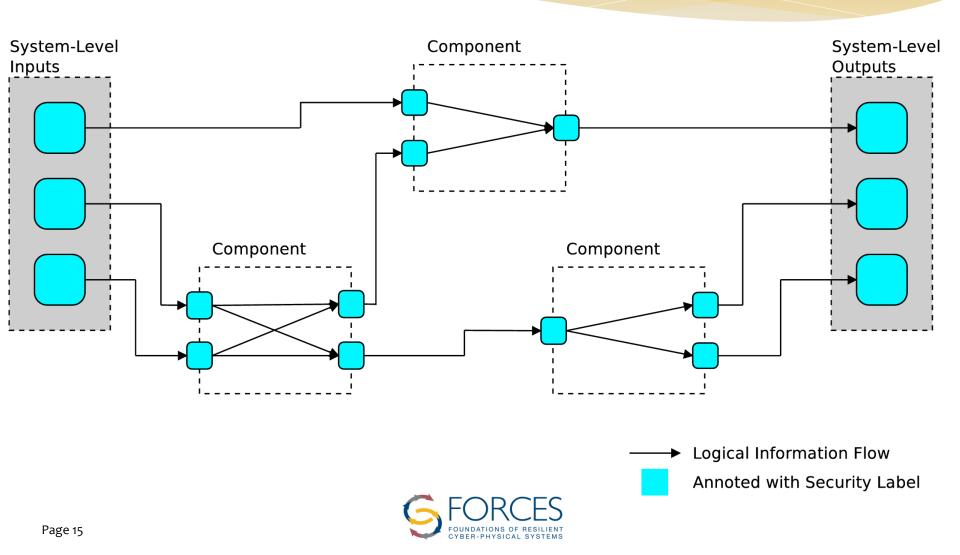
owners(L_1) \subseteq owners(L_2) $\forall o \in owners(L_1), readers(L_1, o) \supseteq readers(L_2, o)$ (L_1 has more readers and fewer owners than L_2)

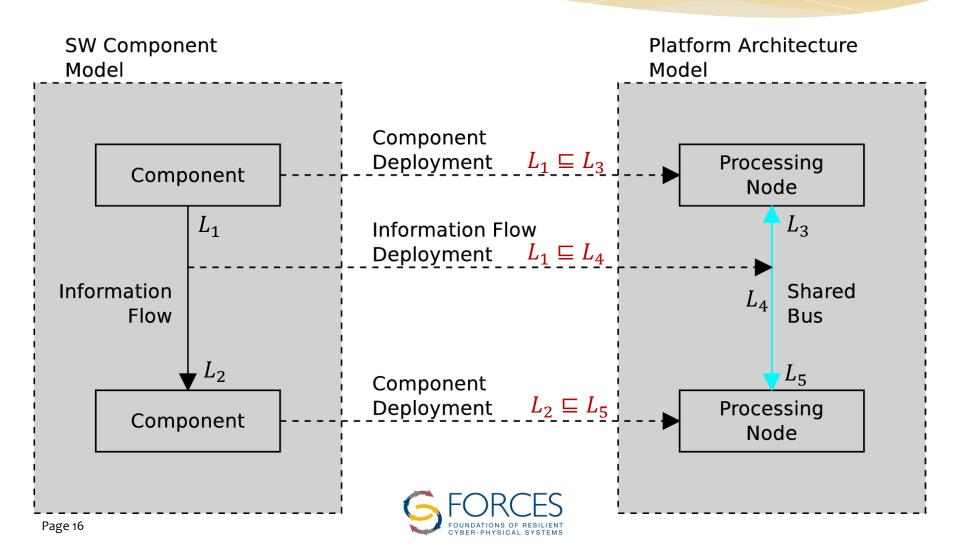
* Propagation rule-2 (join):



 $owners(L_1 \sqcup L_2) = owners(L_1) \cup owners(L_2)$ $readers(L_1 \sqcup L_2, o) = readers(L_1, o) \cap readers(L_2, o)$


(join L_1 and L_2 is the least restrictive label that maintains all the flow restrictions specified by L_1 and L_2)


Simple Example


Information Flow Over SW **Component Model**

Information Flow Over SW Component Model

Information Flow Over System Platform -s

- 1. Goals
- 2. Decentralized Label Model
- **3.** Formal Framework
- 4. System-level Synthesis Framework
- 5. Next Steps

FORMULA

- * Ethan Jackson (ISIS grad student 2004-2008; MSR 2009 Present)
- Algebraic Data Types (ADT) Open World Logic Programs (OLP) provide common semantic domain for DSMLs and model transformations.
- * Constraint Logic Programming provides execution semantics for model transformations.
- * Z3 backend for model finding.

Example: Deployments Domain

```
1:
    domain Deployments
2:
    {
3:
      Service ::= new (name: String).
4:
      Node ::= new (id: Natural).
5:
      Conflict ::= new (s1: Service, s2: Service).
      Deploy ::= fun (s: Service => n: Node).
6:
7:
8:
      conforms no { n | Deploy(s, n), Deploy(s', n),
             Conflict(s, s') }.
9: }
```


Example: Partial Model

```
partial model SpecificProblem of Deployments
1:
2:
    {
3:
       requires Deployments.conforms.
4:
5:
       sVoice is Service ("Voice Recognition").
6:
       sDB is Service ("Big Database").
7:
       n0 is Node(0).
8:
       nl is Node(1).
9:
      Conflict(sVoice, sDB).
10: }
```


- 1. Goals
- 2. Decentralized Label Model
- 3. Formal Framework
- 4. System-level Synthesis Framework
- 5. Next Steps

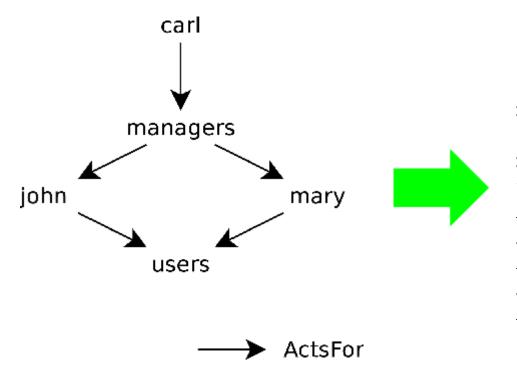
Principal Hierarchy

Stakeholders are denoted by principals, each uniquely identified by a name:

Principal ::= new (name:String).

A relation over principals:

ActsFor := new (Principal, Principal).


The term ActsFor(A,B) indicates that principal A is allowed to perform actions as if it were principal B.

The "ActsFor" relation is transitive and reflexive:

```
ActsForTR ::= (Principal, Principal).
ActsForTR(x,x) :- x is Principal. //reflexivity
ActsForTR(x,y) :- ActsFor(x,y).
ActsForTR(x,z) :- ActsForTR(x,y), ActsFor(y,z). //transitivity
```


Principal Hierarchy Example

carl is Principal("carl").
managers is Principal("managers").
john is Principal("john").
mary is Principal("mary").
users is Principal("users").
ActsFor(carl, managers).
ActsFor(managers, john).
ActsFor(managers, mary).
ActsFor(john, users).
ActsFor(mary, users).

Policies and Labels

A policy consists of an owner principal and a set of allowed reader principals:

owner: reader1 reader2

A label is a (possibly empty) set of policies:

L = { policy1; policy2; ...}

Our encoding views a label as a tree where the label's identifier is the root, the policy owners make up the second level, and the corresponding readers make up the third level :

```
Label ::= new (name:String).
Policy ::= new (lbl:Label, owner:Principal).
Reader ::= new (pl:Policy, reader:Principal).
```


Label Encoding Example

L1 = { sam: bob amy; john: bob }


```
L1 is Label("L1").
P1 is Policy(L1, Principal("sam")).
Reader(P1, Principal("bob")).
Reader(P1, Principal("amy")).
P2 is Policy(L1, Principal("john")).
Reader(P2, Principal("bob")).
```


Inferring Label Information

We can compute the effective readers set for each label:

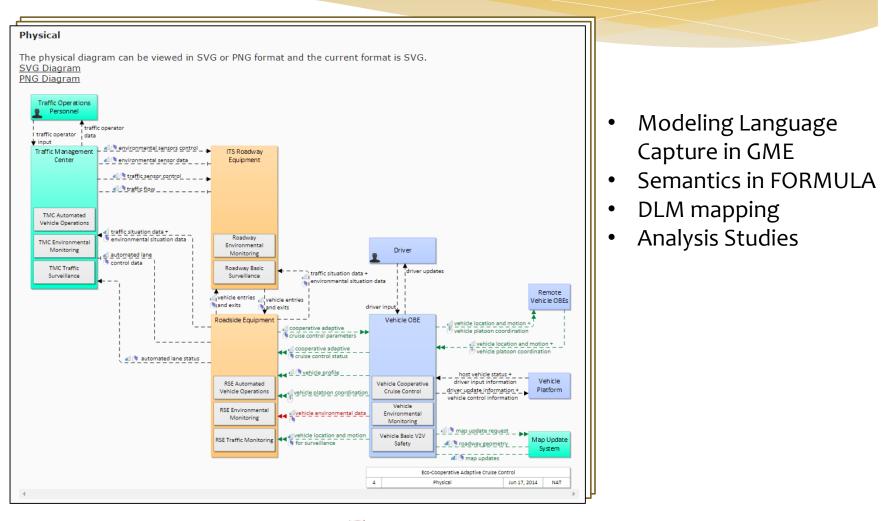
```
EffReader(lbl, reader) :-
    lbl is Label, reader is Principal, no CantRead(lbl, reader).
CantRead(pl.lbl, r) :-
    pl is Policy, r is Principal,
    no { r' | ActsForTR(r, r'), Reader(pl, r') }.
```

We can compare the restrictiveness of labels based on their effective reader sets:

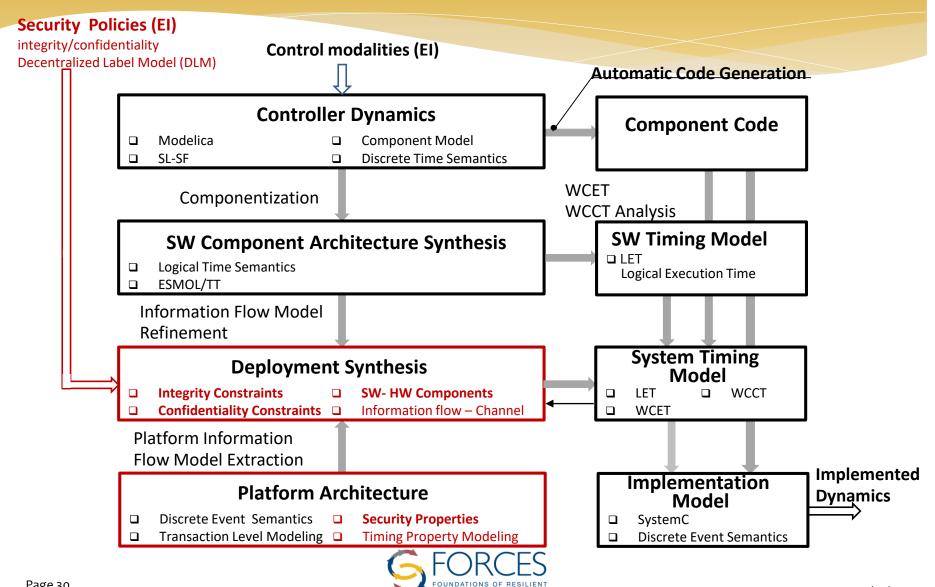
```
AtLeastAsRestrictive(lbl1, lbl2) :-
    lbl1 is Label, lbl2 is Label,
    no { x | EffReader(lbl1, x), CantRead(lbl2, x) }.
```

We can also "propagate" policies by computing the join (\coprod) of two labels: the least restrictive label that is at least as restrictive as both labels.

- 1. Goals
- 2. Decentralized Label Model
- 3. Formal Framework
- 4. System-level Synthesis Framework
- 5. Next Steps



Workflow for Designing Secure Distributed Embedded Systems



Test Cases – DOT/CVRIA

Summary

CYBER-PHYSICAL SYSTEMS