
Progress Towards
System-Security Co-design

Janos Sztipanovits

David Lindecker

ISIS-Vanderbilt

Page 2

1. Goals

2. Decentralized Label Model

3. Formal Framework

4. System-level Synthesis Framework

5. Next Steps

Content

2/24/2017

Page 3

 The traditional system-level synthesis problem for the “cyber”
side of CPS:
 Derive specification for the behavior of the system components that will

be implemented using networked computing
 Derive a functional model for the information architecture and

componentize the system
 Select computing/networking platform
 Derive deployment model assigning components of the information

architecture to processing and communication platforms
 Generate code for software components and derive WCET and WCCT
 Perform timing analysis

 Making security part of system-level co-design
- Mitigation of security vulnerabilities cost performance, timing, even

functionality
- Our goal is to address security requirements as part of the design trades

embedded in the system-level design process

What Is Our Goal?

2/24/2017

Page 4

Co-design Problem in FORCES

2/24/2017

System-Security Codesign

Hierarchical Control
(distributed, resilient control dynamics)

Dynamic Information Architecture
(processing and information flows)

Deployment Platform
(platforms with dynamic performance and

security properties)

modes,
policies

risk data
performance data

dynamic
mapping

Functional

Design

Implemen-

tation Design security and
performance
properties

Page 5

Design Flow

2/24/2017

 Modelica
 SL-SF

 Component Model
 Discrete Time Semantics

 Logical Time Semantics
 ESMOL/TT

 Integrity Constraints
 Confidentiality Constraints

 Discrete Event Semantics
 Transaction Level Modeling

 Security Properties
 Timing Property Modeling

Platform Architecture

Componentization

 Integrity Constraints
 Confidentiality Constraints

 SW- HW Components & Dev.
 Information flow – Channel

Deployment Synthesis

Security Policies (EI)
integrity/confidentiality
Decentralized Label Model (DLM)

Control modalities (EI)

SW Component Architecture Synthesis

Component Code

WCET
WCCT Analysis

Automatic Code Generation

Controller Dynamics

 LET
SW Timing Model

 SystemC
 Discrete Event Semantics

Implementation
Model

 LET
 WCET

 WCCT

System Timing
Model

Implemented
Dynamics

Logical Execution Time

Information Flow Model
Refinement

Platform Information
Flow Model Extraction

Page 6

 Modeling language suite
(behavior, information flows, SW components, architecture,
timing, platform, deployment) - reuse previous work

 Security Requirement Modeling
(need to be composable with other modeling aspects)

 Common Semantic Domain and Formal Framework
(functional, performance and security models need to be
anchored to a semantic domain suitable for synthesis)

 Synthesis Framework and Co-design flow
(mapping system-level synthesis problem on the formal
framework and tools)

 Integrated Tool Suite and Validation
(target domain rich enough for testing the co-design tool suite)

Challenges

2/24/2017

Page 7

1. Goals

2. Decentralized Label Model

3. Formal Framework

4. System-level Synthesis Framework

5. Next Steps

Content

2/24/2017

Page 8

 Integrity attacks
- Manipulate data (value, timestamp, source identity,..)

* Confidentiality attack
- Leak critical data to unauthorized persons/systems

* Integrity and confidentiality restrictions impose constraints on
information flows.
- How to model these restrictions?

- How to integrate these restrictions with others (functional and
timing) and formulate a co-design problem?

Security Concerns Addressed

Page 9

 Myers, Liskov (1997): Introduced security-typed languages by
labeling variables with information flow security policies

 Method was developed for programming languages, the result is
Jif, a security-typed version of Java.

* DLM provides mechanism for static/dynamic type checking of
security labels in information flows to detect policy violations.

* Example: Jif, a security-typed version of Java

Decentralized Label Model (DLM) for Information
Flow Control

2/24/2017

Page 10

 New semantic concepts introduced:
 Principles that represent authority entities.

 Labels expressing security classes encountered in most information
flow models.

 Policies that are elementary security primitives used in labels.

 Labeled entities that have attached labels, such as values, slots
(variables, objects, i/o channels). Copies of values can be relabeled,
slots cannot.

 Operators that can relabel or declassify values in information flows.

* The model can be naturally applied to system-level information
flow modeling languages by assigning security types to
input/output ports

DLM Concepts

2/24/2017

Page 11

 Labels contain a set of policies. Each policy includes an owner and
a set of readers allowed by the owner. The effective reader set
for a label is the intersection of every reader set in it.
L = {o1: r1, r2; o2: r2, r3}

 Processing blocks running under the authority of an owner can
declassify the owner’s policy by adding readers.

Working With Security Labels

2/24/2017

Module1
(o1)

L2L1

L1 = {o1: r1, r2; o2: r2, r3} L2 = {o1: r1, r2 ,r3, ; o2: r2, r3}

Page 12

 Propagation rule-1 (restriction):

Propagation Rules

2/24/2017

Module1 L1 L1 Module2L2

value

 Propagation rule-2 (join):

inherits relabels

𝐿1 ⊑ 𝐿2

𝑜𝑤𝑛𝑒𝑟𝑠(𝐿1) ⊆ 𝑜𝑤𝑛𝑒𝑟𝑠(𝐿2)

∀𝑜 ∈ 𝑜𝑤𝑛𝑒𝑟𝑠 𝐿1 , 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 𝐿1, 𝑜 ⊇ 𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝐿2, 𝑜)

Module
L1

L2

L3

L3 is the join of L1 and L2

𝐿3 = 𝐿1⨆𝐿2

𝑜𝑤𝑛𝑒𝑟𝑠 𝐿1⨆𝐿2 = 𝑜𝑤𝑛𝑒𝑟𝑠 𝐿1 ∪ 𝑜𝑤𝑛𝑒𝑟𝑠(𝐿2)

𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝐿1⨆𝐿2, 𝑜) = 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 𝐿1, 𝑜 ∩ 𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝐿2, 𝑜)

(L1 has more readers and fewer owners than L2)

(join L1 and L2 is the least restrictive label that maintains
all the flow restrictions specified by L1 and L2)

Page 13

Simple Example

2/24/2017

Airport

A
Arr./Dep.
History

Airline Data

Extr. E
Airline data

Researchers

R

Data

Analytics D

Analytics
DB

Results

(al: al,A) (R: al,R)

(R: R,D) (R: R,D)

(D: D)

Principles: {A, al, E, R, D}
Act-for: {E -> al}
Policies: (owner: readerlist)

(al: al,A)..
Labels: {(policy)1,(policy)2..}

trusted agent

()

Page 14 2/24/2017

Information Flow Over SW
Component Model

Page 15

Information Flow Over SW
Component Model

Page 16

Information Flow Over
System Platform -s

𝐿1 ⊑ 𝐿3

𝐿1

𝐿2

𝐿3

𝐿4

𝐿5

𝐿1 ⊑ 𝐿4

𝐿2 ⊑ 𝐿5

Page 17

1. Goals

2. Decentralized Label Model

3. Formal Framework

4. System-level Synthesis Framework

5. Next Steps

Content

2/24/2017

Page 18

 Ethan Jackson (ISIS grad student 2004-2008; MSR 2009 – Present)

 Algebraic Data Types (ADT) Open World Logic Programs (OLP)
provide common semantic domain for DSMLs and model
transformations.

 Constraint Logic Programming provides execution semantics for
model transformations.

 Z3 backend for model finding.

FORMULA

2/24/2017

Page 19

1: domain Deployments

2: {

3: Service ::= new (name: String).

4: Node ::= new (id: Natural).

5: Conflict ::= new (s1: Service, s2: Service).

6: Deploy ::= fun (s: Service => n: Node).

7:

8: conforms no { n | Deploy(s, n), Deploy(s’, n),

Conflict(s, s’) }.

9: }

Example: Deployments Domain

2/24/2017

Page 20

Example: Partial Model

2/24/2017

1: partial model SpecificProblem of Deployments

2: {

3: requires Deployments.conforms.

4:

5: sVoice is Service(“Voice Recognition”).

6: sDB is Service(“Big Database”).

7: n0 is Node(0).

8: n1 is Node(1).

9: Conflict(sVoice, sDB).

10: }

Page 21

1. Goals

2. Decentralized Label Model

3. Formal Framework

4. System-level Synthesis Framework

5. Next Steps

Content

2/24/2017

Page 22

ActsFor ::= new (Principal, Principal).

Stakeholders are denoted by principals, each uniquely identified by a name:

Principal ::= new (name:String).

A relation over principals:

The term ActsFor(A,B) indicates that principal A is allowed to perform actions as if

it were principal B.

The “ActsFor” relation is transitive and reflexive:

ActsForTR ::= (Principal, Principal).

ActsForTR(x,x) :- x is Principal. //reflexivity

ActsForTR(x,y) :- ActsFor(x,y).

ActsForTR(x,z) :- ActsForTR(x,y), ActsFor(y,z). //transitivity

Principal Hierarchy

Page 23

carl is Principal(“carl”).

managers is Principal(“managers”).

john is Principal(“john”).

mary is Principal(“mary”).

users is Principal(“users”).

ActsFor(carl, managers).

ActsFor(managers, john).

ActsFor(managers, mary).

ActsFor(john, users).

ActsFor(mary, users).

Principal Hierarchy Example

Page 24

A policy consists of an owner principal and a set of allowed reader principals:

Label ::= new (name:String).

Policy ::= new (lbl:Label, owner:Principal).

Reader ::= new (pl:Policy, reader:Principal).

owner: reader1 reader2

A label is a (possibly empty) set of policies:

L = { policy1; policy2; ...}

Our encoding views a label as a tree where the label's identifier is the root,

the policy owners make up the second level, and the corresponding readers

make up the third level :

Policies and Labels

Page 25

L1 = { sam: bob amy; john: bob }

L1 is Label(“L1”).

P1 is Policy(L1, Principal(“sam”)).

Reader(P1, Principal(“bob”)).

Reader(P1, Principal(“amy”)).

P2 is Policy(L1, Principal(“john”)).

Reader(P2, Principal(“bob”)).

Label Encoding Example

Page 26

We can compute the effective readers set for each label:

EffReader(lbl, reader) :-

lbl is Label, reader is Principal, no CantRead(lbl, reader).

CantRead(pl.lbl, r) :-

pl is Policy, r is Principal,

no { r' | ActsForTR(r, r'), Reader(pl, r') }.

We can compare the restrictiveness of labels based on their effective reader sets:

AtLeastAsRestrictive(lbl1, lbl2) :-

lbl1 is Label, lbl2 is Label,

no { x | EffReader(lbl1, x), CantRead(lbl2, x) }.

We can also “propagate” policies by computing the join (∐) of two labels: the

least restrictive label that is at least as restrictive as both labels.

Inferring Label Information

Page 27

1. Goals

2. Decentralized Label Model

3. Formal Framework

4. System-level Synthesis Framework

5. Next Steps

Content

2/24/2017

Page 28

Workflow for Designing Secure
Distributed Embedded Systems

Import Synthesized
Deployment Model

Synthesize Deployment
Model

WCET

Timing
Verification

SDL/STRIDE
Platform

Configuration

Implementation

Page 29

Test Cases – DOT/CVRIA

2/24/2017

• Modeling Language
Capture in GME

• Semantics in FORMULA
• DLM mapping
• Analysis Studies

Page 30

Summary

2/24/2017

 Modelica
 SL-SF

 Component Model
 Discrete Time Semantics

 Logical Time Semantics
 ESMOL/TT

 Integrity Constraints
 Confidentiality Constraints

 Discrete Event Semantics
 Transaction Level Modeling

 Security Properties
 Timing Property Modeling

Platform Architecture

Componentization

 Integrity Constraints
 Confidentiality Constraints

 SW- HW Components
 Information flow – Channel

Deployment Synthesis

Security Policies (EI)
integrity/confidentiality
Decentralized Label Model (DLM)

Control modalities (EI)

SW Component Architecture Synthesis

Component Code

WCET
WCCT Analysis

Automatic Code Generation

Controller Dynamics

 LET
SW Timing Model

 SystemC
 Discrete Event Semantics

Implementation
Model

 LET
 WCET

 WCCT

System Timing
Model

Implemented
Dynamics

Logical Execution Time

Information Flow Model
Refinement

Platform Information
Flow Model Extraction

