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 The traditional system-level synthesis problem for the “cyber” 
side of CPS:
 Derive specification for the behavior of the  system components that will 

be implemented using networked computing
 Derive a functional model for the information architecture and 

componentize the system
 Select computing/networking platform
 Derive deployment model assigning components of the information 

architecture to processing and communication platforms
 Generate code for software components and derive WCET and WCCT
 Perform timing analysis 

 Making security part of system-level  co-design 
- Mitigation of security vulnerabilities cost performance, timing, even 

functionality
- Our goal is to address security requirements as part of the design trades 

embedded  in the system-level design process

What Is Our Goal?
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Co-design Problem in FORCES
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System-Security Codesign

Hierarchical Control
(distributed, resilient control dynamics)

Dynamic Information Architecture
(processing and information flows)

Deployment Platform
(platforms with dynamic performance and 

security properties)

modes,
policies

risk data
performance data

dynamic
mapping

Functional

Design

Implemen-

tation Design security and
performance
properties
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Design Flow
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 Modelica
 SL-SF

 Component Model
 Discrete Time Semantics

 Logical Time Semantics
 ESMOL/TT

 Integrity Constraints
 Confidentiality Constraints

 Discrete Event  Semantics
 Transaction Level Modeling

 Security Properties
 Timing Property Modeling

Platform Architecture

Componentization 

 Integrity Constraints
 Confidentiality Constraints

 SW- HW Components & Dev.
 Information flow – Channel

Deployment Synthesis 

Security  Policies (EI)
integrity/confidentiality 
Decentralized Label Model (DLM)

Control modalities (EI)

SW Component Architecture Synthesis

Component Code

WCET 
WCCT Analysis

Automatic Code Generation

Controller Dynamics

 LET
SW Timing Model

 SystemC
 Discrete Event Semantics

Implementation 
Model

 LET
 WCET

 WCCT

System Timing 
Model

Implemented
Dynamics

Logical Execution Time

Information Flow Model
Refinement

Platform Information 
Flow Model Extraction
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 Modeling language suite
(behavior, information flows, SW components, architecture, 
timing, platform, deployment)  - reuse previous work

 Security  Requirement Modeling
(need to be composable with other modeling aspects)

 Common Semantic Domain and Formal Framework
(functional, performance and security models need to be 
anchored to a semantic domain suitable for synthesis)

 Synthesis Framework and Co-design flow
(mapping system-level synthesis problem on the formal 
framework and tools)

 Integrated Tool Suite and Validation
(target domain rich enough for testing the co-design tool suite)

Challenges
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 Integrity attacks
- Manipulate data (value, timestamp, source identity,..)

* Confidentiality attack
- Leak critical data to unauthorized  persons/systems

* Integrity and confidentiality restrictions impose constraints on 
information flows.
- How to model these restrictions?

- How to integrate these restrictions  with others (functional and 
timing) and formulate a co-design problem?

Security Concerns Addressed 
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 Myers, Liskov (1997): Introduced security-typed languages by 
labeling variables with information flow security policies

 Method was developed for programming languages, the result is 
Jif, a security-typed version of Java.

* DLM provides mechanism for static/dynamic type checking of 
security labels in information flows to detect policy violations. 

* Example: Jif, a security-typed version of Java

Decentralized Label Model (DLM) for Information 
Flow Control

2/24/2017
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 New semantic concepts introduced:
 Principles that represent authority entities.

 Labels expressing security classes encountered in most information 
flow models.

 Policies that are elementary security primitives used in labels.

 Labeled entities that have attached labels, such as values, slots 
(variables, objects, i/o channels). Copies of values can be relabeled, 
slots cannot. 

 Operators that can relabel or declassify values in information flows.

* The model can be naturally applied to system-level information 
flow  modeling languages by assigning security types to 
input/output ports

DLM Concepts

2/24/2017
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 Labels contain a set of policies. Each policy includes an owner and 
a set of readers allowed by the owner.  The effective reader set 
for a label is the intersection of every reader set in it.
L = {o1: r1, r2; o2: r2, r3}

 Processing blocks running under the authority of an owner can
declassify the owner’s policy by adding readers.

Working With Security Labels

2/24/2017

Module1
(o1)

L2L1

L1 = {o1: r1, r2; o2: r2, r3} L2 = {o1: r1, r2 ,r3, ; o2: r2, r3}
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 Propagation rule-1 (restriction):

Propagation Rules
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Module1 L1 L1 Module2L2

value

 Propagation rule-2 (join):

inherits relabels

𝐿1 ⊑ 𝐿2

𝑜𝑤𝑛𝑒𝑟𝑠(𝐿1) ⊆ 𝑜𝑤𝑛𝑒𝑟𝑠(𝐿2)

∀𝑜 ∈ 𝑜𝑤𝑛𝑒𝑟𝑠 𝐿1 , 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 𝐿1, 𝑜 ⊇ 𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝐿2, 𝑜)

Module
L1

L2

L3

L3 is the join of L1 and L2 

𝐿3 = 𝐿1⨆𝐿2

𝑜𝑤𝑛𝑒𝑟𝑠 𝐿1⨆𝐿2 = 𝑜𝑤𝑛𝑒𝑟𝑠 𝐿1 ∪ 𝑜𝑤𝑛𝑒𝑟𝑠(𝐿2)

𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝐿1⨆𝐿2, 𝑜) = 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 𝐿1, 𝑜 ∩ 𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝐿2, 𝑜)

(L1 has more readers and fewer owners than L2)

(join L1 and  L2 is the least restrictive label that maintains
all the flow restrictions specified by L1 and  L2)
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Simple Example
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Airport 

A
Arr./Dep.
History

Airline Data 

Extr.  E
Airline data

Researchers

R

Data 

Analytics D

Analytics 
DB

Results

(al: al,A) (R: al,R)

(R: R,D) (R: R,D)

(D: D)

Principles: {A, al, E, R, D}
Act-for: {E -> al}
Policies: (owner: readerlist)

(al: al,A)..
Labels: {(policy)1,(policy)2..}

trusted agent

()
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Information Flow Over SW
Component Model
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Information Flow Over SW
Component Model
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Information Flow Over
System Platform -s

𝐿1 ⊑ 𝐿3

𝐿1

𝐿2

𝐿3

𝐿4

𝐿5

𝐿1 ⊑ 𝐿4

𝐿2 ⊑ 𝐿5
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 Ethan Jackson (ISIS grad student 2004-2008; MSR 2009 – Present)

 Algebraic Data Types (ADT) Open World Logic Programs (OLP) 
provide common semantic domain for DSMLs and model 
transformations.

 Constraint Logic Programming provides execution semantics for 
model transformations.

 Z3 backend for model finding.

FORMULA
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1: domain Deployments

2: {

3: Service ::= new (name: String).

4: Node ::= new (id: Natural).

5: Conflict ::= new (s1: Service, s2: Service).

6: Deploy ::= fun (s: Service => n: Node).

7:

8: conforms no { n | Deploy(s, n), Deploy(s’, n), 

Conflict(s, s’) }.

9: }

Example: Deployments Domain

2/24/2017
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Example: Partial Model
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1: partial model SpecificProblem of Deployments

2: {

3: requires Deployments.conforms.

4:

5: sVoice is Service(“Voice Recognition”).

6: sDB is Service(“Big Database”).

7: n0 is Node(0).

8: n1 is Node(1).

9: Conflict(sVoice, sDB).

10: }
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ActsFor   ::= new (Principal, Principal).

Stakeholders are denoted by principals, each uniquely identified by a name: 

Principal ::= new (name:String).

A relation over principals:

The term ActsFor(A,B) indicates that principal A is allowed to perform actions as if 

it were principal B.

The “ActsFor” relation is transitive and reflexive:

ActsForTR ::= (Principal, Principal).

ActsForTR(x,x) :- x is Principal. //reflexivity

ActsForTR(x,y) :- ActsFor(x,y).

ActsForTR(x,z) :- ActsForTR(x,y), ActsFor(y,z). //transitivity

Principal Hierarchy
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carl is Principal(“carl”).

managers is Principal(“managers”).

john is Principal(“john”).

mary is Principal(“mary”).

users is Principal(“users”).

ActsFor(carl, managers).

ActsFor(managers, john).

ActsFor(managers, mary).

ActsFor(john, users).

ActsFor(mary, users).

Principal Hierarchy Example
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A policy consists of an owner principal and a set of allowed reader principals: 

Label  ::= new (name:String).

Policy ::= new (lbl:Label, owner:Principal).

Reader ::= new (pl:Policy, reader:Principal).

owner: reader1 reader2

A label is a (possibly empty) set of policies: 

L = { policy1; policy2; ...}

Our encoding views a label as a tree where the label's identifier is the root, 

the policy owners make up the second level, and the corresponding readers 

make up the third level : 

Policies and Labels
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L1 = { sam: bob amy; john: bob }

L1 is Label(“L1”).

P1 is Policy(L1, Principal(“sam”)).

Reader(P1, Principal(“bob”)).

Reader(P1, Principal(“amy”)).

P2 is Policy(L1, Principal(“john”)).

Reader(P2, Principal(“bob”)).

Label Encoding Example
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We can compute the effective readers set for each label: 

EffReader(lbl, reader) :-

lbl is Label, reader is Principal, no CantRead(lbl, reader).

CantRead(pl.lbl, r) :-

pl is Policy, r is Principal,

no { r' | ActsForTR(r, r'), Reader(pl, r') }.

We can compare the restrictiveness of labels based on their effective reader sets: 

AtLeastAsRestrictive(lbl1, lbl2) :-

lbl1 is Label, lbl2 is Label,

no { x | EffReader(lbl1, x), CantRead(lbl2, x) }.

We can also “propagate” policies by computing the join (∐) of two labels: the 

least restrictive label that is at least as restrictive as both labels.

Inferring Label Information
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Workflow for Designing Secure
Distributed Embedded Systems

Import Synthesized
Deployment Model

Synthesize Deployment 
Model

WCET

Timing
Verification

SDL/STRIDE
Platform

Configuration

Implementation
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Test Cases – DOT/CVRIA
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• Modeling Language
Capture in GME

• Semantics in FORMULA
• DLM mapping
• Analysis Studies
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Summary
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