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Online Learning over a finite set

A decision maker faces a sequential problem:

An example
0000

Online decision problem over a finite set {1,..., N}.

1: for t € Ndo
2: Decision maker chooses distribution x(*) over {1,... N}.
3. A loss vector £() € RY is revealed.

4:  The decision maker incurs expected loss Z:’Zl 4(;&5“ = <x(t),é(t)>
5: end for
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Applications

o Convergence of player dynamics in games (Hannan, Blackwell)
{1,..., N} is the set of actions.
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Applications

Applications

o Convergence of player dynamics in games (Hannan, Blackwell)
{1,..., N} is the set of actions.

@ Boosting in Machine Learning (Hazan, Shamir)
{1,..., N} is the training set.

@ “Model-free” portfolio optimization (Cover, Blum)
{1,..., N} is the set of stocks.



The problem Dual Averaging on L<(S) Dual averaging with w potentials An example
0000 00000 0000000 0000

Learning on a continuum

“What if the action set is infinite?”

Problem 1 Online decision problem on S.
1: for t € N do
2. Decision maker chooses distribution x{*) over S.
3. A loss function £ : S — R, is revealed.
4. The decision maker incurs expected loss

(x9,00) = / A($)O()A(ds) = E[(9(s)]
S s~oxlt

5. end for
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Learning on a continuum

“What if the action set is infinite?”

Problem 2 Online decision problem on S.
1: for t € N do
2. Decision maker chooses distribution x{*) over S.
3. A loss function £ : S — R, is revealed.
4. The decision maker incurs expected loss

(x9,00) = / A($)O()A(ds) = E[(9(s)]
S s~oxlt

5. end for

Regret

sup

([(t)) x@ o




e Games with infinite action sets

o Player dynamics
o Computation of Nash equilibria
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e Games with infinite action sets

o Player dynamics
o Computation of Nash equilibria

@ Pricing problems:
Action set is the price interval.
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An example

0000

Dual Averaging on L%(S)

00000

The problem
00000

0000000

Applications

@ Games with infinite action sets

o Player dynamics

o Computation of Nash equilibria

@ Pricing problems:

Action set is the price interval.

@ Tracking on non-convex sets.
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Results
Assumptions on 20 convex a-exp-concave uniformly L-Lipschitz
Assumptions on S convex convex v-uniformly fat
Gradient Hedge Dual Averagin
Method & gne
(Zinkevich) (Hazan et al.) (Krichene et al.)
Learning rates 1/t @ 1/t
R® O (V1) O (log t) O(y/tlogt)

Table: Some regret upper bounds for different classes of losses.
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A review of dual averaging (Nesterov)

X€

X closed, convex of a Hilbert (H, {-,-)). f convex.

7/22




The problem Dual Averaging on L%(S) Dual averaging with w potentials An example
00000 @0000 0000000 0000

A review of dual averaging (Nesterov)

Constrained convex optimization

min f(x)

xeEX

X closed, convex of a Hilbert (H, {-,-)). f convex.

Algorithm 4 Dual averaging method with dual sequence (Z(f)), learning rates
(m¢), strongly convex regularizer

1: for t € N do

2. Discover () ¢ H*

3. Define L =3¢ ¢

4. Update

1

Ne+1

X = argi‘nei/g <L(t),x> + P(x) (1)

5: end for

In convex optimization, /() = V£(x(®). But dual averaging has general
guarantees, regardless of convexity.

S
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A review of dual averaging (Nesterov)

t 2 t

oo 1 M
> (60,57 - x) < V0)+ 3D

T7=1 =1

(here M is a bound on [|£(®)]|.)

Consequence

Convex optimization \ Online learning
f (% S X(T)) —f 50 \ sup,anv RO (x) = o(t)

S
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A review of dual averaging (Nesterov)

t

Nt

2 t
S {010 - x) < () + % Tzzlm

T7=1

(here M is a bound on [|£(®)]|.)

Consequence

Convex optimization \ Online learning

f (% S X(T)) —f 50 \ sup,anv RO (x) = o(t)

Q Take X = A(S).
@ Apply dual averaging.

c
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More precisely...

T

Assume S is compact subset of R".

X = A(S) = {x € L2(S) : x > 0 ae. and /x(s))\(ds) —1)
S

o H=(L3(S),{-,-)) is Hilbert
e H* = H, and since S is compact, C(S) C L*(S)

e X is convex, closed

Even though S is not convex, A(S) is.
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More precisely...

Assume S is compact subset of R”.

Set of Lebesgue continuous distributions over S

X=A(S)={xel*S):x>0ae. and /Sx(s))\(ds) =1}

o H=(L3(S), () is Hilbert
e H* = H, and since S is compact, C(S) C L*(S)
e X is convex, closed

Even though S is not convex, A(S) is.

Problem solved?

C,FORCES




e A(S) is infinite dimensional. How do you solveA

t
1
H 6(7’)’ + =
xénAl?S) <Z X> Mt d)(X)

T=1
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Well...

e A(S) is infinite dimensional. How do you solve
XgnAln <Z€ > P(x)
o Can we obtain a meaningful regret bound?

R(t)(X) < 771 2777'

An example
0000

E.g. the negative entropy 1(x) = [ x(s) Inx(s)A(ds) is unbounded (take

X = >\(A j1a, AC'S, then P(x ): fln/\(A))

c
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We are in luck!

For a class of regularizers v, induced by w potentials,
@ Can solve the dual averaging iteration.

@ Have sufficient conditions for sublinear regret (when S has reasonable
geometry)
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w potentials

Csiszar divergence induced by w potential

Csiszar divergence, defined on X

r, (x) = /5 £ (x(s))A\(ds)

An example
0000

where f,(x) = [ ¢ (u)du, and ¢ : (—o0, a) = (w,00) C* diffeomorphism
such that lim,_ _ o ¢( ) =w, limy5,¢(u ) = +00. (fy is convex and
fs(1) =0.)

Figure: lllustration of an w-potential.



Dual averaging iteration

“‘

t
X = arg min <Z Z(T),x> + nl'zp(x)
t

xEA(S) p—y
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Dual averaging iteration

t
(t+1) _ . () 1
X = arg min 070 x )y + —(x
g <§ > mw( )

xEA(S) 1

An example
0000

X(t“)(s) = <l5(—77t+1(L(t)(5) +v)+

where v* satisfies [|x(*Y||; = 1.

S
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Dual averaging iteration

t
(t+1) _ . () 1
X = arg min 070 x )y + —(x
g <§ > mw( )

x€A(S) p—y

An example
0000

X(t“)(s) = ¢(—77t+1(L(t)(5) +v)+

where v* satisfies [|x(*Y||; = 1.

Observing that ||x{**V||; is a monotone function of v*, this can be solved using

a bisection method.

S
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L2 projection:
o du)y=u

° 'gbf¢(x) _ ||><||§—1
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L2 projection:
o du)y=u
21
° ’led,(X) _ |IXI|22
Generalized entropy projection:
o p(u) =e"" —¢

© tr,(x) = —H(x+¢) + H(l +¢)
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Dual averaging iteration

“’

Example: L? projection

S = (LO(s) + v)

XD (s) = p(=nea (L(s) + 7))+
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Dual averaging iteration
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Example: L? projection

S = (LO(s) + v)

XD (s) = p(=nea (L(s) + 7))+
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Regret bound

On which sets S can we learn?

S is v-uniformly fat if for all s € S, 3K C S convex, with s € K and A(K) > v

Intuitively, there is enough mass around each point of S.

Figure: lllustration of uniform fatness
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Regret bound

On which sets S can we learn?
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Regret bound

On which sets S can we learn?

S is v-uniformly fat if for all s € S, 3K C S convex, with s € K and A(K) > v

Intuitively, there is enough mass around each point of S.
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Regret bound

Suppose that S is v-uniformly fat, and that Je > 0 such that
fo(x) = O(x*) as x — oco.
Then DA with learning rates n; = 6t~ satisfies
R(®)

=0 (t"’ + t*ﬁ)




Summary

B

For the family of Csiszar divergences
@ Can compute the solution
@ Regret bound
o (Also: sufficient conditions for strong convexity)
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Numerical example

o () are quadratics
o Hedge algorithm (¢ is the negative entropy)

@ On the set S:

log time-avg. cumulative regret, Quadratic losses

Results:

—  0y(T=1.0¢+04) =0.013
—  (T=15¢+03) =0.029
— 7=0.200

— =025

7 =02547%

10°?
10° 10" 107 10° 10°
t

Figure: Mean time-average cumulative regret (solid), 10% and 90% quantiles (shaded
regions) and worst-case bounds (dashed).



A second example

@ Dual averaging with a p-norm potential

(Loading Video...)

Figure: Evolution of the probability density x(t)
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test.avi
Media File (video/avi)
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We can learn on a continuum (when S has reasonable geometry).
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Conclusion

We can learn on a continuum (when S has reasonable geometry).

Extensions and open questions
o Lower bounds on the regret.
@ When can we sample efficiently? Depends on S and the family of loss
functions.

o Extend to the bandit case: instead of observing the full loss function ¢(*),
only observe £((s(*)), where s(*) is sampled ~ x(*).
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Thank you.
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