The problem

Dual Averaging on $L^2(S)$ 00000

Dual averaging with ω potentials 0000000

An example

Online Learning on a Continuum

Maximilian Balandat

Walid Krichene Claire Tomlin

Alexandre Bayen

Dept. of Electrical Engineering & Computer Sciences, UC Berkeley, CA, USA

1/22

00000	00000	0000000	0000
Outline			

- 2 Dual Averaging on $L^2(S)$
- 3 Dual averaging with ω potentials

00000	00000	0000000	0000
Outline			

- **2** Dual Averaging on $L^2(S)$
- (3) Dual averaging with ω potentials

The problem 00000	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example 0000
Online Learning	over a finite set		

A decision maker faces a sequential problem:

Online decision problem over a finite set $\{1, \ldots, N\}$.

- 1: for $t \in \mathbb{N}$ do
- 2: Decision maker chooses distribution $x^{(t)}$ over $\{1, \ldots, N\}$.
- 3: A loss vector $\ell^{(t)} \in \mathbb{R}^N_+$ is revealed.
- 4: The decision maker incurs expected loss $\sum_{n=1}^{N} \ell_n^{(t)} x_n^{(t)} = \langle x^{(t)}, \ell^{(t)} \rangle$
- 5: end for

The problem	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example 0000
Applications			

- Convergence of player dynamics in games (Hannan, Blackwell) {1,..., N} is the set of actions.
- Boosting in Machine Learning (Hazan, Shamir) {1,..., N} is the training set.
- "Model-free" portfolio optimization (Cover, Blum) {1,..., N} is the set of stocks.

The problem	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example 0000
Applications			

- Convergence of player dynamics in games (Hannan, Blackwell) {1,..., N} is the set of actions.
- Boosting in Machine Learning (Hazan, Shamir) {1,..., N} is the training set.
- "Model-free" portfolio optimization (Cover, Blum) {1,..., N} is the set of stocks.

The problem	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example
Applications			

- Convergence of player dynamics in games (Hannan, Blackwell) {1,..., N} is the set of actions.
- Boosting in Machine Learning (Hazan, Shamir) {1,..., N} is the training set.
- "Model-free" portfolio optimization (Cover, Blum) $\{1, \ldots, N\}$ is the set of stocks.

The problem 00●00	Dual Averaging on L ² (5) 00000	Dual averaging with ω potentials 0000000	An example 0000
Learning on a	continuum		
"What if the	action set is infinite?"		
Problem 1 (Online decision problem o	on S.	

- 1: for $t \in \mathbb{N}$ do
- 2: Decision maker chooses distribution $x^{(t)}$ over *S*.
- 3: A loss function $\ell^{(t)}: S \to \mathbb{R}_+$ is revealed.
- 4: The decision maker incurs expected loss

$$\left\langle x^{(t)},\ell^{(t)}
ight
angle =\int_{\mathcal{S}}x^{(t)}(s)\ell^{(t)}(s)\lambda(ds)=\mathop{\mathbb{E}}_{s\sim x^{(t)}}[\ell^{(t)}(s)]$$

5: end for

Regret

$$R^{(T)}(x) = \sum_{t=1}^{T} \left\langle x^{(t)}, \ell^{(t)} \right\rangle - \left\langle x, \sum_{t=1}^{T} \ell^{(t)} \right\rangle$$

The problem	Dual Averaging on L [*] (5) 00000	Dual averaging with ω potentials 0000000	An example 0000
Learning on a c	ontinuum		
"What if the	action set is infinite?"		
Problem 2 O	nline decision problem	on S.	

- 1: for $t \in \mathbb{N}$ do
- 2: Decision maker chooses distribution $x^{(t)}$ over S.
- 3: A loss function $\ell^{(t)}: S \to \mathbb{R}_+$ is revealed.
- 4: The decision maker incurs expected loss

$$\left\langle x^{(t)},\ell^{(t)}
ight
angle =\int_{\mathcal{S}}x^{(t)}(s)\ell^{(t)}(s)\lambda(ds)=\mathop{\mathbb{E}}_{s\sim x^{(t)}}[\ell^{(t)}(s)]$$

5: end for

Regret

$$R^{(T)}(x) = \sum_{t=1}^{T} \left\langle x^{(t)}, \ell^{(t)} \right\rangle - \left\langle x, \sum_{t=1}^{T} \ell^{(t)} \right\rangle$$

4/22

The	prob	lem
000	•0	

Dual Averaging on L²(S)

Dual averaging with ω potentials 0000000

An example

- Games with infinite action sets
 - Player dynamics
 - Computation of Nash equilibria
- Pricing problems: Action set is the price interv
- Tracking on non-convex sets.

The	prob	lem
000	•0	

Dual Averaging on L²(S)

Dual averaging with ω potentials 0000000

An example

- Games with infinite action sets
 - Player dynamics
 - Computation of Nash equilibria
- Pricing problems: Action set is the price interval.
- Tracking on non-convex sets.

The	prob	lem
000	•0	

Dual Averaging on L²(S)

Dual averaging with ω potentials 0000000

An example

- Games with infinite action sets
 - Player dynamics
 - Computation of Nash equilibria
- Pricing problems: Action set is the price interval.
- Tracking on non-convex sets.

The problem	Dual Averaging on L ² (5) 00000	Dual averaging with ω potentials	An example 0000
Results			

Assumptions on $\ell^{(t)}$	convex	α -exp-concave	uniformly L-Lipschitz
Assumptions on S	convex	convex	v-uniformly fat
Method	Gradient	Hedge	Dual Averaging
Method	(Zinkevich)	(Hazan et al.)	(Krichene et al.)
Learning rates	$1/\sqrt{t}$	α	$1/\sqrt{t}$
$R^{(t)}$	$O(\sqrt{t})$	$O(\log t)$	$\mathcal{O}\left(\sqrt{t\log t}\right)$

Table: Some regret upper bounds for different classes of losses.

00000	00000	0000000	0000
Outline			

1 The problem

2 Dual Averaging on $L^2(S)$

(3) Dual averaging with ω potentials

An example

Algorithm 3 Dual averaging method with dual sequence $(\ell^{(t)})$, learning rates (η_t) , strongly convex regularizer ψ

- 1: for $t \in \mathbb{N}$ do
- 2: Discover $\ell^{(t)} \in H^*$
- 3: Define $L^{(t)} = \sum_{\tau=1}^{t} \ell^{(\tau)}$
- 4: Update

$$x^{(t+1)} = \arg\min_{x \in \mathcal{X}} \left\langle L^{(t)}, x \right\rangle + \frac{1}{\eta_{t+1}} \psi(x) \tag{1}$$

5: end for

In convex optimization, $\ell^{(t)} = \nabla f(x^{(t)})$. But dual averaging has general guarantees, regardless of convexity.

The problem	Dual Averaging on L ² (S) •0000	Dual averaging with ω potentials	An example 0000
A review of c	lual averaging (Nesterov	v)	
Constraine	ed convex optimization		
	m	$ \inf_{X} f(x) $	

 \mathcal{X} closed, convex of a Hilbert $(H, \langle \cdot, \cdot \rangle)$. f convex.

Algorithm 4 Dual averaging method with dual sequence $(\ell^{(t)})$, learning rates (η_t) , strongly convex regularizer ψ

1: for $t \in \mathbb{N}$ do

2: Discover
$$\ell^{(t)} \in H^*$$

3: Define
$$L^{(t)} = \sum_{\tau=1}^{t} \ell^{(\tau)}$$

4: Update

$$x^{(t+1)} = \arg\min_{x \in \mathcal{X}} \left\langle \mathcal{L}^{(t)}, x \right\rangle + \frac{1}{\eta_{t+1}} \psi(x) \tag{1}$$

5: end for

In convex optimization, $\ell^{(t)} = \nabla f(x^{(t)})$. But dual averaging has general guarantees, regardless of convexity.

The problem			Dual Averaging on L ² (S)		Dual averaging with ω potentials		An example	
0000	00		0000	0			000000	0000
		<i>.</i> .			<i>(</i> . .			

A review of dual averaging (Nesterov)

Dual averaging guarantee

$$\sum_{\tau=1}^t \left\langle \ell^{(\tau)}, x^{(\tau)} - x \right\rangle \leq \frac{1}{\eta_t} \psi(x) + \frac{M^2}{2\ell_\psi} \sum_{\tau=1}^t \eta_\tau$$

(here *M* is a bound on $\|\ell^{(t)}\|_*$)

Consequence

$$\begin{tabular}{|c|c|c|c|} \hline Convex optimization & Online learning \\ \hline f\left(\frac{1}{t}\sum_{\tau=1}^{t}x^{(\tau)}\right) - f^{\star} \rightarrow 0 & \sup_{x \in \Delta^{N}} R^{(t)}(x) = o(t) \\ \hline \end{tabular}$$

dea

• Take
$$\mathcal{X} = \Delta(S)$$
.

Apply dual averaging.

The problem			Dual Averaging on L ² (S)		Dual averaging with ω potentials		An example	
0000	00		0000	0			000000	0000
		<i>.</i> .			<i>(</i> . .			

A review of dual averaging (Nesterov)

Dual averaging guarantee

$$\sum_{\tau=1}^t \left\langle \ell^{(\tau)}, x^{(\tau)} - x \right\rangle \leq \frac{1}{\eta_t} \psi(x) + \frac{M^2}{2\ell_\psi} \sum_{\tau=1}^t \eta_\tau$$

(here *M* is a bound on $\|\ell^{(t)}\|_*$)

Consequence

Convex optimizationOnline learning
$$f\left(\frac{1}{t}\sum_{\tau=1}^{t} x^{(\tau)}\right) - f^* \rightarrow 0$$
 $\sup_{x \in \Delta^N} R^{(t)}(x) = o(t)$

Idea

- Take $\mathcal{X} = \Delta(S)$.
- O Apply dual averaging.

The problem	Dual Averaging on L ² (S)	Dual averaging with ω potentials	An example
00000	00000	0000000	0000
More precisely			

Assume S is compact subset of \mathbb{R}^n .

Set of Lebesgue continuous distributions over S

$$\mathcal{X}=\Delta(\mathcal{S})=\{x\in L^2(\mathcal{S}):x\geq 0 ext{ a.e. and } \int_{\mathcal{S}}x(s)\lambda(ds)=1\}$$

- $H = (L^2(S), \langle \cdot, \cdot \rangle)$ is Hilbert
- $H^* = H$, and since S is compact, $C(S) \subset L^2(S)$
- \mathcal{X} is convex, closed

Even though S is not convex, $\Delta(S)$ is.

Problem solved?

The problem	Dual Averaging on L ² (S)	Dual averaging with ω potentials	An example
00000	00000	0000000	0000
More precisely			

Assume S is compact subset of \mathbb{R}^n .

Set of Lebesgue continuous distributions over S

$$\mathcal{X}=\Delta(\mathcal{S})=\{x\in L^2(\mathcal{S}):x\geq 0 ext{ a.e. and } \int_{\mathcal{S}}x(s)\lambda(ds)=1\}$$

- $H = (L^2(S), \langle \cdot, \cdot \rangle)$ is Hilbert
- $H^* = H$, and since S is compact, $C(S) \subset L^2(S)$
- \mathcal{X} is convex, closed

Even though S is not convex, $\Delta(S)$ is.

Problem solved?

The problem	Dual Averaging on L ² (S) 000●0	Dual averaging with ω potentials	An example 0000
Well			

• $\Delta(S)$ is infinite dimensional. How do you solve

$$\min_{x \in \Delta(S)} \left\langle \sum_{\tau=1}^{t} \ell^{(\tau)}, x \right\rangle + \frac{1}{\eta_t} \psi(x)$$

• Can we obtain a meaningful regret bound?

$$R^{(t)}(x) \leq \frac{1}{\eta_t}\psi(x) + \frac{M}{2\ell_{\psi}}\sum_{\tau=1}^t \eta_{\tau}$$

E.g. the negative entropy $\psi(x) = \int_S x(s) \ln x(s) \lambda(ds)$ is unbounded (take $x = \frac{1}{\lambda(A)} \mathbb{1}_A$, $A \subset S$, then $\psi(x) = -\ln \lambda(A)$)

The problem	Dual Averaging on L ² (S) 000●0	Dual averaging with ω potentials	An example 0000
Well			

• $\Delta(S)$ is infinite dimensional. How do you solve

$$\min_{x \in \Delta(S)} \left\langle \sum_{\tau=1}^{t} \ell^{(\tau)}, x \right\rangle + \frac{1}{\eta_t} \psi(x)$$

• Can we obtain a meaningful regret bound?

$${\mathcal R}^{(t)}(x) \leq rac{1}{\eta_t}\psi(x) + rac{M}{2\ell_\psi}\sum_{ au=1}^t\eta_ au$$

E.g. the negative entropy $\psi(x) = \int_S x(s) \ln x(s) \lambda(ds)$ is unbounded (take $x = \frac{1}{\lambda(A)} \mathbb{1}_A$, $A \subset S$, then $\psi(x) = -\ln \lambda(A)$)

For a class of regularizers ψ , induced by ω potentials,

- Can solve the dual averaging iteration.
- Have sufficient conditions for sublinear regret (when S has reasonable geometry)

The problem	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example 0000
Outline			

3 Dual averaging with ω potentials

The problem	Dual Averaging on $L^2(S)$	Dual averaging with ω potentials	An example
00000	00000	●000000	0000
ω potentials			

Csiszár divergence induced by ω potential

Csiszár divergence, defined on $\ensuremath{\mathcal{X}}$

$$\psi_{f_{\phi}}(x) = \int_{S} f_{\phi}(x(s))\lambda(ds)$$

where $f_{\phi}(x) = \int_{1}^{x} \phi^{-1}(u) du$, and $\phi : (-\infty, a) \to (\omega, \infty) \ C^{1}$ diffeomorphism such that $\lim_{u\to-\infty} \phi(u) = \omega$, $\lim_{u\to a} \phi(u) = +\infty$. (f_{ϕ} is convex and $f_{\phi}(1) = 0$.)

Figure: Illustration of an ω -potential.

The	pro	ble	em
000	00		

Dual averaging with ω potentials 000000

An example

Dual averaging iteration

$$x^{(t+1)} = \operatorname*{arg\,min}_{x \in \Delta(S)} \left\langle \sum_{ au=1}^t \ell^{(au)}, x \right\rangle + rac{1}{\eta_t} \psi(x)$$

Solution

$$x^{(t+1)}(s) = \phi(-\eta_{t+1}(L^{(t)}(s) + \nu^*))_+$$

where ν^* satisfies $||x^{(t+1)}||_1 = 1$.

Observing that $\|x^{(t+1)}\|_1$ is a monotone function of ν^* , this can be solved using a bisection method.

The	pro	ble	em
000	00		

Dual averaging with ω potentials 000000

An example

Dual averaging iteration

$$x^{(t+1)} = \operatorname*{arg\,min}_{x \in \Delta(S)} \left\langle \sum_{ au=1}^{t} \ell^{(au)}, x \right\rangle + rac{1}{\eta_t} \psi(x)$$

Solution

$$x^{(t+1)}(s) = \phi(-\eta_{t+1}(L^{(t)}(s) + \nu^{\star}))_{+}$$

where ν^{\star} satisfies $\|x^{(t+1)}\|_1 = 1$.

Observing that $\|x^{(t+1)}\|_1$ is a monotone function of ν^* , this can be solved using a bisection method.

The	pro	Ы	em	
000	00			

Dual averaging with ω potentials 000000

An example

Dual averaging iteration

$$x^{(t+1)} = \operatorname*{arg\,min}_{x \in \Delta(S)} \left\langle \sum_{ au=1}^{t} \ell^{(au)}, x \right\rangle + rac{1}{\eta_t} \psi(x)$$

Solution

$$x^{(t+1)}(s) = \phi(-\eta_{t+1}(L^{(t)}(s) + \nu^{\star}))_{+}$$

where ν^{\star} satisfies $\|x^{(t+1)}\|_1 = 1$.

Observing that $\|x^{(t+1)}\|_1$ is a monotone function of $\nu^\star,$ this can be solved using a bisection method.

The problem	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials 000000	An example 0000
Example			

L^2 projection:

- $\phi(u) = u$
- $\psi_{f_{\phi}}(x) = \frac{\|x\|_2^2 1}{2}$

Generalized entropy projection:

- $\phi(u) = e^{u+1} e^{u+1}$
- $\psi_{f_{\phi}}(x) = -H(x+\epsilon) + H(1+\epsilon)$

The problem	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials 000000	An example 0000
Example			

L^2 projection:

- $\phi(u) = u$ $\psi_{f_{\phi}}(x) = \frac{\|x\|_2^2 1}{2}$

Generalized entropy projection:

•
$$\phi(u) = e^{u+1} - e^{u+1}$$

•
$$\psi_{f_{\phi}}(x) = -H(x+\epsilon) + H(1+\epsilon)$$

The	problem	
000	00	

Dual averaging with ω potentials 000000

An example

Dual averaging iteration

Example: L^2 projection

$$x^{(t+1)}(s) = \phi(-\eta_{t+1}(L^{(t)}(s) + \nu^{\star}))_+$$

The	problem
000	00

Dual averaging with ω potentials 000000

An example

Dual averaging iteration

Example: L^2 projection

$$x^{(t+1)}(s) = \phi(-\eta_{t+1}(L^{(t)}(s) + \nu^{\star}))_+$$

The problem 00000	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example 0000
Regret bo	und		
On wh	ich sets S can we learn?		
Fat set	S		
S is v-	uniformly fat if for all $s \in S$, \exists	${\it K} \subset {\it S}$ convex, with ${\it s} \in {\it K}$ and ${\it \lambda}$	$(K) \geq v$

0000	oroblem 00	Dual Averaging on L ² (S)	Dual averaging with ω potentials	An example
Reg	gret bound			
	On which sets	s S can we learn?		
	Fat sets			
	S is v-uniform	nly fat if for all $s \in S$,	$\exists K \subset S$ convex, with $s \in K$ and $\lambda(s)$	$K) \geq v$

The problem	Dual Averaging on L ² (5)	Dual averaging with ω potentials 0000000	An example
Regret bound			
On which s	ets S can we learn?		
Fat sets			
S is v-unife	ormly fat if for all $s \in S$, \exists	$K \subset S$ convex, with $s \in K$ and λ	$(K) \ge v$

0000	oroblem DO	Dual Averaging on L ² (S)	Dual averaging with ω potentials	An example 0000
Reg	gret bound			
	On which sets	s S can we learn?		
	Fat sets			
	<i>S</i> is <i>v</i> -uniform	nly fat if for all $s \in S$,	$\exists K \subset S$ convex, with $s \in K$ and λ	$\kappa(K) \geq v$

The p	roblem 0	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example
Reg	ret bound			
	Regret rate			
	Suppose that	S is v-uniformly fat, an	nd that $\exists \epsilon > 0$ such that	
		$f_{\phi}(x) = \mathcal{O}($	$x^{1+\epsilon})$ as $x o\infty.$	
	Then DA wit	h learning rates $\eta_t = heta t$	$^{-lpha}$ satisfies	
		$rac{{\mathcal R}^{(t)}}{t}={\mathcal O}$	$\left(t^{-lpha}+t^{-rac{1-lpha}{1+n\epsilon}} ight)$	

The problem	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example 0000
Summary			

For the family of Csiszár divergences

- Can compute the solution
- Regret bound
- (Also: sufficient conditions for strong convexity)

The problem	Dual Averaging on L ² (5) 00000	Dual averaging with ω potentials	An example
Outline			

- 2 Dual Averaging on $L^2(S)$
- 3 Dual averaging with ω potentials

The problem	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example 0000
Numerical exar	nple		
	•		
• $\ell^{(t)}$ are	quadratics		
Hedge a	algorithm (ψ is the negative	e entropy)	
• On the	sot S:		
• On the	set J.		
Results:			
	log time-avg. cumulat	ive regret. Quadratic losses	
	10'	$\eta_{opt}(T=1.0e+04)=0.013$	
	102	$\eta_{opt}(T=1.5e+03) = 0.029$	
		$\eta = 0.200$ $\eta_t = 0.25 \cdot t^{-0.15}$	
	101	$\eta_t = 0.25 t^{-0.3}$	
	100		
	10'1		
	102		
	10 ⁻³ 10 ⁰ 10 ¹	10^2 10^3 10^4	

Figure: Mean time-average cumulative regret (solid), 10% and 90% quantiles (shaded regions) and worst-case bounds (dashed).

10² t

The problem 00000	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example ○●○○
A second exa	ample		
● ℓ ^(t) a ● Dual	are quadratics averaging with a <i>p</i> -norm po	otential	

(Loading Video...)

Figure: Evolution of the probability density $x^{(t)}$

We can learn on a continuum (when S has reasonable geometry).

Extensions and open questions

- Lower bounds on the regret.
- When can we sample efficiently? Depends on *S* and the family of loss functions.
- Extend to the bandit case: instead of observing the full loss function $\ell^{(t)}$, only observe $\ell^{(t)}(s^{(t)})$, where $s^{(t)}$ is sampled $\sim x^{(t)}$.

We can learn on a continuum (when S has reasonable geometry).

Extensions and open questions

- Lower bounds on the regret.
- When can we sample efficiently? Depends on S and the family of loss functions.
- Extend to the bandit case: instead of observing the full loss function $\ell^{(t)}$, only observe $\ell^{(t)}(s^{(t)})$, where $s^{(t)}$ is sampled $\sim x^{(t)}$.

The problem 00000	Dual Averaging on L ² (S) 00000	Dual averaging with ω potentials	An example 000●

Thank you.

