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Online Learning over a finite set

A decision maker faces a sequential problem:

Online decision problem over a finite set {1, . . . ,N}.
1: for t ∈ N do
2: Decision maker chooses distribution x (t) over {1, . . .N}.
3: A loss vector `(t) ∈ RN

+ is revealed.
4: The decision maker incurs expected loss

∑N
n=1 `

(t)
n x

(t)
n =

〈
x (t), `(t)

〉
5: end for
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Applications

Applications

Convergence of player dynamics in games (Hannan, Blackwell)
{1, . . . ,N} is the set of actions.

Boosting in Machine Learning (Hazan, Shamir)
{1, . . . ,N} is the training set.

“Model-free” portfolio optimization (Cover, Blum)
{1, . . . ,N} is the set of stocks.



3/22

The problem Dual Averaging on L2(S) Dual averaging with ω potentials An example

Applications

Applications

Convergence of player dynamics in games (Hannan, Blackwell)
{1, . . . ,N} is the set of actions.

Boosting in Machine Learning (Hazan, Shamir)
{1, . . . ,N} is the training set.

“Model-free” portfolio optimization (Cover, Blum)
{1, . . . ,N} is the set of stocks.



3/22

The problem Dual Averaging on L2(S) Dual averaging with ω potentials An example

Applications

Applications

Convergence of player dynamics in games (Hannan, Blackwell)
{1, . . . ,N} is the set of actions.

Boosting in Machine Learning (Hazan, Shamir)
{1, . . . ,N} is the training set.

“Model-free” portfolio optimization (Cover, Blum)
{1, . . . ,N} is the set of stocks.



4/22

The problem Dual Averaging on L2(S) Dual averaging with ω potentials An example

Learning on a continuum

“What if the action set is infinite?”

Problem 1 Online decision problem on S .
1: for t ∈ N do
2: Decision maker chooses distribution x (t) over S .
3: A loss function `(t) : S → R+ is revealed.
4: The decision maker incurs expected loss〈

x (t), `(t)
〉

=

∫
S

x (t)(s)`(t)(s)λ(ds) = E
s∼x(t)

[`(t)(s)]

5: end for

Regret

R(T )(x) =
T∑

t=1

〈
x (t), `(t)

〉
−

〈
x ,

T∑
t=1

`(t)

〉

sup
(`(t))

sup
x∈∆N

R(T )(x) = o(T )
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Applications

Games with infinite action sets
Player dynamics
Computation of Nash equilibria

Pricing problems:
Action set is the price interval.

Tracking on non-convex sets.



5/22

The problem Dual Averaging on L2(S) Dual averaging with ω potentials An example

Applications

Games with infinite action sets
Player dynamics
Computation of Nash equilibria

Pricing problems:
Action set is the price interval.

Tracking on non-convex sets.



5/22

The problem Dual Averaging on L2(S) Dual averaging with ω potentials An example

Applications

Games with infinite action sets
Player dynamics
Computation of Nash equilibria

Pricing problems:
Action set is the price interval.

Tracking on non-convex sets.



6/22

The problem Dual Averaging on L2(S) Dual averaging with ω potentials An example

Results

Assumptions on `(t) convex α-exp-concave uniformly L-Lipschitz

Assumptions on S convex convex v-uniformly fat

Method
Gradient

(Zinkevich)

Hedge

(Hazan et al.)

Dual Averaging

(Krichene et al.)

Learning rates 1/
√
t α 1/

√
t

R(t) O
(√

t
)

O
(
log t

)
O
(√

t log t
)

Table: Some regret upper bounds for different classes of losses.
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A review of dual averaging (Nesterov)

Constrained convex optimization

min
x∈X

f (x)

X closed, convex of a Hilbert (H, 〈·, ·〉). f convex.

Algorithm 3 Dual averaging method with dual sequence (`(t)), learning rates
(ηt), strongly convex regularizer ψ
1: for t ∈ N do
2: Discover `(t) ∈ H∗

3: Define L(t) =
∑t
τ=1 `

(τ)

4: Update

x (t+1) = arg min
x∈X

〈
L(t), x

〉
+

1
ηt+1

ψ(x) (1)

5: end for

In convex optimization, `(t) = ∇f (x (t)). But dual averaging has general
guarantees, regardless of convexity.
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A review of dual averaging (Nesterov)

Dual averaging guarantee

t∑
τ=1

〈
`(τ), x (τ) − x

〉
≤ 1
ηt
ψ(x) +

M2

2`ψ

t∑
τ=1

ητ

(here M is a bound on ‖`(t)‖∗)

Consequence

Convex optimization Online learning

f
(

1
t

∑t
τ=1 x

(τ)
)
− f ? → 0 supx∈∆N R(t)(x) = o(t)

Idea
1 Take X = ∆(S).
2 Apply dual averaging.
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More precisely...

Assume S is compact subset of Rn.

Set of Lebesgue continuous distributions over S

X = ∆(S) = {x ∈ L2(S) : x ≥ 0 a.e. and
∫
S

x(s)λ(ds) = 1}

H = (L2(S), 〈·, ·〉) is Hilbert

H∗ = H, and since S is compact, C(S) ⊂ L2(S)

X is convex, closed

Even though S is not convex, ∆(S) is.

Problem solved?
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Well...

∆(S) is infinite dimensional. How do you solve

min
x∈∆(S)

〈
t∑

τ=1

`(τ), x

〉
+

1
ηt
ψ(x)

Can we obtain a meaningful regret bound?

R(t)(x) ≤ 1
ηt
ψ(x) +

M

2`ψ

t∑
τ=1

ητ

E.g. the negative entropy ψ(x) =
∫
S
x(s) ln x(s)λ(ds) is unbounded (take

x = 1
λ(A)

1A, A ⊂ S , then ψ(x) = − lnλ(A))
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We are in luck!

For a class of regularizers ψ, induced by ω potentials,

Can solve the dual averaging iteration.

Have sufficient conditions for sublinear regret (when S has reasonable
geometry)
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ω potentials

Csiszár divergence induced by ω potential

Csiszár divergence, defined on X

ψfφ (x) =

∫
S
fφ(x(s))λ(ds)

where fφ(x) =
∫ x

1 φ
−1(u)du, and φ : (−∞, a)→ (ω,∞) C 1 diffeomorphism

such that limu→−∞ φ(u) = ω, limu→a φ(u) = +∞. (fφ is convex and
fφ(1) = 0.)

ω

x

1

a0

φ(u)
fφ(x)

Figure: Illustration of an ω-potential.
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Dual averaging iteration

x (t+1) = argmin
x∈∆(S)

〈
t∑

τ=1

`(τ), x

〉
+

1
ηt
ψ(x)

Solution

x (t+1)(s) = φ(−ηt+1(L(t)(s) + ν?))+

where ν? satisfies ‖x (t+1)‖1 = 1.

Observing that ‖x (t+1)‖1 is a monotone function of ν?, this can be solved using
a bisection method.
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Example

L2 projection:

φ(u) = u

ψfφ(x) =
‖x‖22−1

2

Generalized entropy projection:

φ(u) = eu+1 − ε
ψfφ(x) = −H(x + ε) + H(1 + ε)
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Dual averaging iteration

Example: L2 projection

0 1
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Regret bound

On which sets S can we learn?

Fat sets

S is v -uniformly fat if for all s ∈ S , ∃K ⊂ S convex, with s ∈ K and λ(K) ≥ v

Intuitively, there is enough mass around each point of S .

s

S

Ks

Figure: Illustration of uniform fatness
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Regret bound

Regret rate

Suppose that S is v -uniformly fat, and that ∃ε > 0 such that

fφ(x) = O(x1+ε) as x →∞.

Then DA with learning rates ηt = θt−α satisfies

R(t)

t
= O

(
t−α + t−

1−α
1+nε

)
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Summary

For the family of Csiszár divergences

Can compute the solution

Regret bound

(Also: sufficient conditions for strong convexity)
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Numerical example

`(t) are quadratics
Hedge algorithm (ψ is the negative entropy)
On the set S :

Results:

100 101 102 103 104

t

10-3

10-2

10-1

100

101

102

103 log time-avg. cumulative regret, Quadratic losses

ηopt(T=1.0e+04) =0.013

ηopt(T=1.5e+03) =0.029

η=0.200

ηt =0.25 ·t−0.15

ηt =0.25 ·t−0.3

Figure: Mean time-average cumulative regret (solid), 10% and 90% quantiles (shaded
regions) and worst-case bounds (dashed).
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A second example

`(t) are quadratics

Dual averaging with a p-norm potential

(Loading Video...)

Figure: Evolution of the probability density x(t)


test.avi
Media File (video/avi)
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Conclusion

We can learn on a continuum (when S has reasonable geometry).

Extensions and open questions

Lower bounds on the regret.

When can we sample efficiently? Depends on S and the family of loss
functions.

Extend to the bandit case: instead of observing the full loss function `(t),
only observe `(t)(s(t)), where s(t) is sampled ∼ x (t).
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Thank you.
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