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Outline

Motivation: CPS resilience, security
Research plan: Three-layer hierarchical approach

Upper layer: Game theory
Middle layer: Stochastic control & Theory of incentives
Lower layer: Control Theory

Will concentrate on the upper and middle layers
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Failures in CPS

Simultaneous attacks [security failures]
Targeted cyber-attacks
Non-targeted cyber-attacks
Coordinated physical attacks

Simultaneous faults [reliability failures]
Common-mode failures
Random failures due to nature
Operator errors

Cascading failures
Failure of nodes in one subnet ⇒ progressive failures in other subnets

.
Observation..

......
Due to cyber-physical interactions, it is extremely difficult to distinguish
reliability & security failures using imperfect diagnostic information.
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Salient features of CPSs

CPSs are multi-agent systems, where
Agents (players) are strategic, utility-maximizing entities
Incomplete and also asymmetric (private) information is present
CPSs are subject to security failures and reliability failures
Defense strategies include both control and IT security tools
Players face regulatory impositions for ensuring efficiency & safety

.A hierarchical approach..

......
The above features, along with the social objectives of resilient CPS
operation, motivate a hierarchical approach.
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Research plan: Three-layer hierarchical approach
.
Upper layer..

......

How the collection of CPS’s agents deal
with external strategic adversary(-ies)
Network games that model both security
failures and reliability failures

.
Middle layer..

......

How strategic agents contribute to CPS
efficiency and safety, while protecting
their conflicting individual objectives
Joint stochastic control and
incentive-theoretic design, coupled with
the outcome of the upper layer game

.
Lower layer..
......

Control at each individual agent’s site.

Lower layer
Control Theory

Middle

Lower layer
Local Control
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Upper hierarchical layer

.
Game with security-reliability failures..

......

Game played on a graph G = (V ,E ,w)
representing the topological structure of CPS

Attacker(s)
Strategic adversary
Nature

Defender: CPS network designer
Lower layer

Control Theory

Middle

Lower layer
Local Control
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Game with security-reliability failures
.
Graph G representing CPS topology..

......

V : Set of nodes
E : Set of edges
w : Set of weights on edges

.
Attacker’s strategy space..

......

E : set of graph’s edges
Attacker chooses an edge e ∈ E

Failure comes from nature with probability π
Failure comes from a strategic adversary with probability (1−π)

.Defender’s strategy space..

......

T : Set of graph’s spanning trees
Defender chooses τ ∈ T
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Game with security-reliability failures

.
Payoffs for a choice of τ ∈ T and e ∈ E..

......

ΠD(τ,e) =v(τ)− (1−π)
[
w(e)1{e∈τ}

]
−π

[
∑

e′∈E

γe′w(e′)1{e′∈τ}

]
ΠA(τ,e) =w(e)1{e∈τ}

v(τ): value of an operational spanning tree τ ∈ T

w(e): Weight/importance of edge e ∈ E

1{e′∈τ}: Indicator function of the even {e ∈ τ}
γe′ : Probability of reliability failure of e′ ∈ E
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Upper hierarchical layer - Game Theory
.
Assumptions..

......

Imperfect information: defender faces aggregate failure probabilities:

P(fe) = πγe︸︷︷︸
reliability

+(1−π)βe︸ ︷︷ ︸
security

, ∀e ∈ E ,

Given failure probabilities due to nature: γ = (γe1 , . . . ,γem)
Equilibrium failure probabilities due to attacker: β = (βe1 , . . . ,βem)

Common knowledge: Payoff functions ΠA and ΠD

.Objectives..

......

Determine Nash equilibria (NE) of the one-stage game within the class
of mixed strategies
Determine equilibria for the finitely or infinitely repeated game
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Upper layer → Middle layer

.

......

How to embed the outcomes of upper
layer into the middle layer failure
models for the design of resilient CPS
strategies using stochastic control and
incentive-theoretic formulations?

Lower layer
Control Theory

MiddleMiddle

Lower layer
Local Control
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Upper layer → Middle layer
.Outcome of upper layer game..

......

Equilibrium strategies for attacker
and defender (α,β )
Edge failure probabilities:
P(fe) = πγe +(1−π)βe , ∀e ∈ E

.
Embedding P(fe) into middle layer
model..

......

Physical: structural failures
Cyber: sensor-actuator failures

.
Middle hierarchical layer..

......
Resulting failure models are used to
design of resilient strategies.

( , , )

Lower layer
Control Theory

MiddleMiddle

Lower layer
Local Control
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Middle hierarchical layer
.
Stochastic control and incentives..

......

Stochastic control: Performance
benchmark against CPS failures
Theory of Incentives: implement in
appropriate equilibria the optimal control
strategies of the stochastic control
problem
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Lower layer
Control Theory

MiddleMiddle

Lower layer
Local Control
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Middle hierarchical layer - CPS model
.Agent i ’s dynamics modeled by..

......

A controlled stochastic vector difference equation
A controlled multi-dimensional Markov chain

X i
t+1 = f i

t

(
X i

t ,U1
t , . . . ,UN

t ,W i
t ,P i

s,t ,P i
u,t

)
N: # of agents in CPS
N = {1, . . . ,N}: set of agents
X t

i ∈ Xi : state of agent i at time t and Xi finite
U i

t : control action of agent i
W i

t : noise in component i at t
P i

s,t and P i
u,t : probabilities of structural failure & actuation failure at t
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Middle hierarchical layer - CPS model

.
State of CPS with N agents at time t..

......
Xt =

(
X 1

t ,X 2
t , . . . ,XN

t

)
.Sensing model..

......
Y i

t = hi
t

(
X i

t ,W
o,i
t ,Po

i ,t

)
, i ∈ N

Y i
t : observation of agent i at t

W o,i
t : observation noise of i at t

Po
i ,t : probability of sensing failure at t
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Middle hierarchical layer - CPS model

.Decision strategies..

......
U i

t = g i
t

(
Y 1

1:t ,Y 2
1:t , . . . ,Y N

1:t ,U1
1:t−1,U2

1:t−1, . . . ,UN
1:t−1

)
, i ∈ N , t = 1, . . . ,T

T : time horizon (finite or infinite)
Y i

1:t =
(
Y i

1,Y i
2, . . . ,Y i

t
)

U i
1:t−1 =

(
U i

1,U i
2, . . . ,U i

t−1
)

g i =
(
g i

1,g i
2, . . . ,g i

T
)
: control/decision strategy of agent i

g =
(
g1,g2, . . . ,gN): control strategy for the CPS
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Middle hierarchical layer - CPS model

.
Reward Functions..

......

Reward function for agent i

R i =
T

∑
t=1

R i
t

(
X i

t ,U1
t ,U2

t , . . . ,UN
t

)
Total reward

R =
N

∑
i=1

T

∑
t=1

R i
t

(
X i

t ,U1
t ,U2

t , . . . ,UN
t

)
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CPS model: An example

CPS system - system consisting of N energy suppliers
Each supplier is strategic (selfish, self-utility optimizer)
Each supplier has private information (e.g. production technology)
Efficient operation so as to achieve a social objective

X i
t : energy producing capability of power supplier i at t

U i
t : energy produced by power suppliers i at t

X i
t+1 = f i

t
(
X i

t ,U i
t ,W i

t ,P i
s,t ,P i

u,t
)
, i.e., X i

t+1 depends on X i
t , U i

t , failures
due to nature, failures due to strategic adversary, repairs.
Profit of power supplier i at time t

R i
t(X i

t ,U1
t ,U2

t , . . . ,UN
t ) = λt

(
U1

t ,U2
t , . . . ,UN

t

)
·U i

t − ĉ i
t
(
X i

t
)
·U i

t

λt
(
U1

t ,U2
t , . . . ,UN

t
)
: price charged per unit of produced energy

ĉ i
t
(
X i

t
)
: cost per unit of energy produced when state is X i

t .
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Middle hierarchical layer - Objectives
Determine g =

(
g1,g2, . . . ,gN) to maximize E g [R], subject to

Informational constraints (agent i ’s information at t is
(
Y i

1:t ,U i
1:t
)
)

Taking strategy behavior into account
.
To achieve the objective..

......

Derive performance benchmark using stochastic control
Achieve performance benchmark by a mechanism/game form which
satisfies the problem’s constraints using the theory of incentives
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Middle hierarchical Layer - Stochastic control

Consider a central authority that has all the information, including
Agents’ utilities/reward functions
Observations & control actions, i.e. It =

(
Y 1

1:t , . . . ,Y N
1:t ,U1

1:t , . . . ,UN
1:t
)

CPS dynamics
.Stochastic control problem..

......

Central authority chooses g =
(
g1,g2, . . . ,gN) to maximize E g [R]

subject to
Sensor-actuator failures
Structural failures

Solution provides a performance benchmark
Achievable if all agents were willing to cooperate & share information
However, CPS agents are strategic, selfish!
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Middle hierarchical layer - Achieving the benchmark

.
Theory of incentives / Mechanism design
..

......

E environment space (space of agents’
utilities, network topologies)
U Action / alloc. / control space
(M,h): game form/mechanism

M: message / strategy space
h: outcome function

µ: message correspondence
∀e ∈ E, (M,h,e) is the game induced
by (M,h)

M

E U

g

µ h
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Middle hierarchical layer - Incentives

Let M∗(e) = {m∗ ∈ M : m∗ is an equilibrium message/strategy of (M,h,e)}
.
Objective: Design (M,h) so that
..

...... ∀e ∈ E , ∀m∗ ∈ M∗(e), h(m∗)(e) = g(e)

That is, design a game form/mechanism (if exists) that accounts for the
Information structure of the CPS,
Agents’ strategic behavior
Achieves the same performance as the performance benchmark (i.e.,
the solution of the stochastic control problem)
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Incentives: Achieving the upper bound
.
Approach..

......

Restrict attention to direct revelation mechanisms invoking the
revelation principle.
Revelation principle: If a game form (M,h) implements g : E → U in a
certain equilibrium concept Λ̂ (e.g. BNE), then there is a direct
revelation mechanism (E,h∗) which has the following property:

Reporting one’s true environment e is an equilibrium message/strategy
of (E,h∗,e) in the same equilibrium concept Λ̂, and h∗(e) ∈ g(e) for all
e ∈ E.
We are looking for truthful implementation of g (optimal control
strategy for the stochastic control problem).
We consider agents i ∈ N = {1,2, . . . ,N} with quasi-linear utilities

Vi
t(X i

t ,U1
t , . . . ,UN

t ,(tx)i
t) = R i

t(X i
t ,U1

t , . . . ,UN
t )− (tx)i

t
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Dynamic Incentives: Achieving the upper bound

.
Determine a dynamic direct revelation mechanism (E,h1,h2, . . . ,hT ) [if it
exists] that has the following properties:
..

......

(i) It is incentive compatible (i.e., truth telling is a BNE of the game
induced by the mechanism)

(ii) It is budget-balanced

N

∑
i=1

(tx)i
t = 0 ∀t OR

T

∑
t=1

N

∑
i=1

(tx)i
t = 0 at truthful equilibrium

(iii) Decisions/control actions at truthful equilibrium are the same as the
decisions made by g (the optimal control law).
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