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Smart, Connected Infrastructure
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Operational Efficiency Informed by Usage Patterns
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Data Disaggregation
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We develop algorithms to make inferences based on aggre-
gate signals and side information.

R. Dong, et al., IFAC, 2014.; R. Dong, et al., Allerton, 2013; R. Dong, et al.,
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Data Disaggregation
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Informational Content of Data

uncontrolled eg HVAC
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There is a trade-off between the operational efficiency of the
system, which benefits from more data, and exposure of the
user’s data, which may lead to a privacy breach.

R. Dong, et al., arXiv:1406.2568 (under review IEEE TSG), 2014;
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There is a trade-off between the operational efficiency of the
system, which benefits from more data, and exposure of the
user’s data, which may lead to a privacy breach.

R. Dong, et al., arXiv:1406.2568 (under review IEEE TSG), 2014; R. Dong, et al., IEEE CDC, 2015
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Informational Content of Data
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Closing the Loop — Integrating the User
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How do people value their data? — Privacy as Good

Designed service contracts differentiated by value
of data to balance efficiency-vulnerability tradeoff

' Characterized contracts with privacy

loss risk modeled using privacy metric

and abstraction of loss.

— High-type free-rides = regulation to
realize the social optimum.

— Privacy loss risk = incentive for
investing in insurance.

Designed insurance contracts for risk-

averse utility company/consumer.
.

-

wigh-Privacy

metering

¥

electricity

rlmpact:

\.

— Privacy loss risk motivates study of security-insurance investment.
— User valuations of data need to be factored in to improve efficiency.

L. Ratliff, et al. arxiv:1409.7926v3, 2014; L. Ratliff, et al. CDC 2014.
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Data as a Commodity
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Data as a Commodity
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Learning & Optimization with Strategic Data Sources

Strategic Sources
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incentive/information (e.g. routing suggestions, money, etc.)
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Shared Economy

A smart infrastructure empowered by the Internet of Things (loT) has at
its core an ecosystem consisting of a shared economy.
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Optimization with Unknown Strategic Sources

Strategic Sources
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Adaptive Incentive Design — Adverse Selection
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Abstraction of an Algorithm — Agent Response

Non—Cooperative Game :

Play Nash ]
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Abstraction of an Algorithm — Update Estimate
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Abstraction of an Algorithm — Design Incentive & Feed it Back
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Convergence Results — Adaptive Control/Online Learning

Under reasonable assumptions, i.e. observations have
enough information (persistence of excitation) and are not
too volatile (stable), then user models converge: 6 — 6.

parameter
convergence

L. Ratliff, Thesis, UC Berkeley, 2015; L. Ratliff, et al., IEEE TAC, 2015; L. Ratliff, et al., SICON (in prep), 2015.
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Convergence Results — Adaptive Control/Online Learning
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[Under reasonable assumptions, i.e. observations have
enough information (persistence of excitation) and are not | »
too volatile (stable), then user models converge: 6 — 6.

parameter
convergence
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(Thm: Agent strategies and incentive parameters converge
to the desired values (x; — x¢ and u; — uf).
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L. Ratliff, Thesis, UC Berkeley, 2015; L. Ratliff, et al., IEEE TAC, 2015; L. Ratliff, et al., SICON (in prep), 2015.
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Convergence Results — Adaptive Control/Online Learning

Under reasonable assumptions, i.e. observations have

i i ) o parameter
enough information (persistence of excitation) and are not convergence
too volatile (stable), then user models converge: 6 — 6.

(Thm: Agent strategies and incentive parameters converge ) )
myopic

to the desired values (x; — x¢ and u; — uf).

. J

(Thm: Suppose x¢ is a non-degenerate differential Nash
equilibrium. For |6 — 6| sufficiently small, there is a Nash Nash
equilibrium of the incentivized game near x¢.

tie. 3e>0, st V0K € B(0), if |(Drw)"'(6,x%) o Di@(6, x )|| is
: uniformly bounded by M > 0 on B¢ (), then ||x* —x%|| < M||6®) —9]|.

L. Ratliff, Thesis, UC Berkeley, 2015; L. Ratliff, et al., IEEE TAC, 2015; L. Ratliff, et al., SICON (in prep), 2015.
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Convergence Results — Adaptive Control/Online Learning

[Under reasonable assumptions, i.e. observations have
enough information (persistence of excitation) and are not
too volatile (stable), then user models converge: 6 — 6.

parameter
convergence

(Thm: Agent strategies and incentive parameters converge
to the desired values (x; — x¢ and u; — uf).

. J

myopic

(Thm: Suppose x¢ is a non-degenerate differential Nash
equilibrium. For |6 — 6| sufficiently small, there is a Nash

equilibrium of the incentivized game near x“. % Nash

(Thm: If x* is stable (D > 0), then users will converge to
(X" under tatonnement.

L. Ratliff, Thesis, UC Berkeley, 2015; L. Ratliff, et al., IEEE TAC, 2015; L. Ratliff, et al., SICON (in prep), 2015.
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Convergence Results — Adaptive Control/Online Learning

[Under reasonable assumptions, i.e. observations have
enough information (persistence of excitation) and are not
too volatile (stable), then user models converge: 6 — 6.

(Thm: Agent strategies and incentive parameters converge
to the desired values (x; — x¢ and u; — uf).

.

(Thm: Suppose x¢ is a non-degenerate differential Nash
equilibrium. For |6 — 6| sufficiently small, there is a Nash

equilibrium of the incentivized game near x¢.
(Thm: If x* is stable (Do > 0), then users will converge to |
(X" under tatonnement. )

parameter
convergence

myopic

* Nash

(— We can add additional constraints/costs such as volunatary

— Persistence of excitation: e.g. radial basis functions

participation and budget balanced to the incentive design step

L. Ratliff, Thesis, UC Berkeley, 2015; L. Ratliff, et al., IEEE TAC, 2015; L. Ratliff, et al., SICON (in prep), 2015.
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Future Directions — Learning & Optimization

Strategic Sources
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Future Directions — Learning & Optimization

Strategic Sources
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Can we provide similar guarantees in this more general case?
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Future Directions — Learning & Optimization

Strategic Sources
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Breakin' the Law, Breakin' the Law,. ..
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Infrastructure Evolution

The shared economy requires service providers to evolve in order to pro-
vide improved services that are competitive in the new marketplace.
7

Smart Energy

Smart Governance 0]
©
®) s

I
©
Smatt Technology = ~~ @ SmartPlanning
@

©
@ Smart Buildings
Smart Mobility

— Companies emerging that
capitalize on access to
streaming data.

— Forces existing infrastructure
systems to modify their op-
erational model in order to
survive.

Not Just Existing Infrastructure: New infrastructure systems are emerg-
ing! (e.g. UAVs+UTM monitoring road, water, power networks)

~
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Workshop @ IEEE CDC 2015

Smart Cities: Service Models, Vulnerabilities, and Resilience

Goal: To see new research and discuss open questions about smart urban
infrastructure.

- ot

o, ' X I e
http://www.eecs.berkeley.edu/~roydong/2015_cdc_ws.html
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