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Data Disaggregation

We develop algorithms to make inferences based on aggre-
gate signals and side information.

R. Dong, et al., IFAC, 2014.; R. Dong, et al., Allerton, 2013; R. Dong, et al., IEEE CDC, 2013; C. Wu, et al., TRB-C, 2015
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Informational Content of Data
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There is a trade-off between the operational efficiency of the
system, which benefits from more data, and exposure of the
user’s data, which may lead to a privacy breach.
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Closing the Loop — Integrating the User
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How do people value their data? — Privacy as Good

Designed service contracts differentiated by value
of data to balance efficiency-vulnerability tradeoff

Characterized contracts with privacy

loss risk modeled using privacy metric

and abstraction of loss.
– High-type free-rides ⇒ regulation to

realize the social optimum.
– Privacy loss risk ⇒ incentive for

investing in insurance.

Designed insurance contracts for risk-

averse utility company/consumer.

Impact:
– Privacy loss risk motivates study of security-insurance investment.
– User valuations of data need to be factored in to improve efficiency.

L. Ratliff, et al. arxiv:1409.7926v3, 2014; L. Ratliff, et al. CDC 2014.
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Data as a Commodity

Infrastructure

flow
networks

UsersUsers Aggregators

Regulators

R. Dong/L. Ratliff 8 / 17



Data as a Commodity

Infrastructure

flow
networks

UsersUsers AggregatorsAggregators

Regulators

R. Dong/L. Ratliff 8 / 17



Learning & Optimization with Strategic Data Sources

Strategic Sources

X
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Γ

incentive/information (e.g. routing suggestions, money, etc.)
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Shared Economy

A smart infrastructure empowered by the Internet of Things (IoT) has at
its core an ecosystem consisting of a shared economy.
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Optimization with Unknown Strategic Sources
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Adaptive Incentive Design — Adverse Selection

Non–Cooperative Game

Planner, fP(x,v)

Agentn
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Abstraction of an Algorithm — Agent Response
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Abstraction of an Algorithm — Design Incentive & Feed it Back

Non–Cooperative Game
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Convergence Results – Adaptive Control/Online Learning

Under reasonable assumptions, i.e. observations have
enough information (persistence of excitation) and are not
too volatile (stable), then user models converge: θ̂ → θ .

parameter
convergence

Thm: Agent strategies and incentive parameters converge
to the desired values (xi → xd

i and ui → ud
i ).

myopic
Thm: Suppose xd is a non-degenerate differential Nash
equilibrium. For ‖θ̂ − θ‖ sufficiently small, there is a Nash
equilibrium of the incentivized game near xd.

Nash

i.e. ∃ ε > 0, s.t. ∀ θ̂ (k) ∈ Bε(θ), if ‖(D2ω)−1(θ ,xd) ◦ D1ω(θ ,xd)‖ is
uniformly bounded by M > 0 on Bε(θ), then ‖x∗− xd‖ ≤ M‖θ̂ (k)−θ‖.

Thm: If x∗ is stable (Dω > 0), then users will converge to
x∗ under tâtonnement.

– We can add additional constraints/costs such as volunatary
participation and budget balanced to the incentive design step

– Persistence of excitation: e.g. radial basis functions

L. Ratliff, Thesis, UC Berkeley, 2015; L. Ratliff, et al., IEEE TAC, 2015; L. Ratliff, et al., SICON (in prep), 2015.
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Future Directions — Learning & Optimization

Strategic Sources

X
estimation/
learning task

e.g. player classification,

demand prediction, . . .

fP(x,v)

operations &
management

e.g. load rebalancing

traffic light control, . . .

Γ

incentive/information (e.g. routing suggestions, money, etc.)

Can we provide similar guarantees in this more general case?
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Old School Regulation
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Breakin’ the Law, Breakin’ the Law,. . .
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Technologically-Aware Regulation and Policies
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Infrastructure Evolution

The shared economy requires service providers to evolve in order to pro-
vide improved services that are competitive in the new marketplace.

– Companies emerging that
capitalize on access to
streaming data.

– Forces existing infrastructure
systems to modify their op-
erational model in order to
survive.

Not Just Existing Infrastructure: New infrastructure systems are emerg-
ing! (e.g. UAVs+UTM monitoring road, water, power networks)

R. Dong/L. Ratliff 16 / 17



Workshop @ IEEE CDC 2015

Smart Cities: Service Models, Vulnerabilities, and Resilience

Goal: To see new research and discuss open questions about smart urban
infrastructure.

http://www.eecs.berkeley.edu/∼roydong/2015 cdc ws.html
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