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•  1.1	
  Billion	
  smart	
  phones	
  
•  244	
  Million	
  smart	
  meters	
  
•  487	
  Million	
  e-­‐readers	
  and	
  tablets	
  
•  2.37	
  Billion	
  networked	
  office	
  devices	
  
•  86	
  Million	
  medical	
  devices	
  
•  45	
  Million	
  connected	
  automobiles	
  
•  547	
  Million	
  connected	
  appliances	
  
•  45	
  Million	
  supervisory	
  control	
  and	
  data	
  acquisition	
  (SCADA)	
  
•  5+	
  Billion	
  other	
  (non-­‐phone/tablet/e-­‐reader)	
  electronic	
  devices	
  
•  Over	
  50	
  Billion	
  connected	
  devices	
  by	
  2020	
  

The	
  world	
  is	
  becoming	
  more	
  and	
  more	
  connected	
  



Page	
  3	
  

The	
  world	
  is	
  becoming	
  more	
  and	
  more	
  connected	
  

Malware	
  enters	
  new	
  landscape	
  as	
  more	
  
parts	
  of	
  the	
  world	
  get	
  connected	
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Malware	
  enters	
  new	
  landscape	
  as	
  more	
  parts	
  of	
  the	
  
world	
  get	
  connected	
  

*  Legacy,	
  traditional	
  vulnerabilities	
  &	
  attacks	
  in	
  new	
  landscape	
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First	
  Security	
  Analysis	
  on	
  Medical	
  Devices	
  

*  Cardiac Science G3 Plus model 9390A 
*  Analysis 
*  Manual reverse engineering using IDA Pro 
*  MDLink, AEDUpdate and device firmware 

*  Automatic binary analysis 
*  BitBlaze binary analysis infrastructure 
*  BitFuzz, the dynamic symbolic execution tool 

*  Vulnerabilities lead to distributed worm in AED 
1.  AED Firmware - Replacement 
2.  AEDUpdate  - Buffer overflow 
3.  AEDUpdate - Plain text user credentials 
4. MDLink  - Weak password scheme 

The case for Software Security Evaluations of Medical Devices [HealthSec’11]  
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Malware	
  enters	
  new	
  landscape	
  as	
  more	
  parts	
  of	
  the	
  
world	
  get	
  connected	
  

*  Legacy,	
  traditional	
  vulnerabilities	
  &	
  attacks	
  in	
  new	
  landscape	
  

*  New	
  classes	
  of	
  vulnerabilities	
  &	
  attacks	
  on	
  new	
  platform	
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Malware	
  

Vulnerable	
  apps	
  

Adware	
  

Apps	
  with	
  undesired/unintended	
  
Security	
  Consequences	
  

Automatic	
  In-­‐depth	
  Analysis	
  of	
  3M+	
  Android	
  Apps	
  

•  UC	
  Berkeley/Ensighta	
  Security	
  Inc./FireEye	
  Inc.	
  



Page	
  8	
  

Case	
  Study	
  in	
  Android:	
  JS	
  Binding	
  &	
  JBOH	
  
Vulnerability	
  

*  JavaScript	
  (JS)	
  Binding	
  	
  
*  JS	
  binding	
  in	
  WebView	
  is	
  designed	
  to	
  allow	
  JS	
  to	
  access	
  certain	
  Java	
  

objects	
  &	
  interfaces	
  exposed	
  to	
  JS	
  
	
  

*  JavaScript	
  (JS)	
  Binding	
  vulnerability	
  
*  JS	
  binding	
  in	
  WebView	
  can	
  be	
  abused	
  to	
  execute	
  arbitrary	
  code	
  on	
  

device	
  from	
  JS	
  
*  JS	
  binding	
  allows	
  JS	
  to	
  use	
  Java	
  reflection	
  to	
  acquire	
  a	
  reference	
  to	
  a	
  
runtime	
  object	
  
*  then	
  execute	
  arbitrary	
  commands	
  on	
  the	
  device	
  

*  E.g.,	
  Adobe	
  pdf	
  reader	
  
*  A	
  malicious	
  PDF	
  can	
  read	
  your	
  files	
  (accessible	
  to	
  Adobe	
  PDF	
  reader)	
  on	
  
Android	
  and	
  send	
  them	
  over	
  the	
  Internet	
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JBOH	
  Vulnerability	
  
*  JavaScript-­‐Binding-­‐over-­‐HTTP	
  (JBOH)	
  vulnerability	
  
*  JS	
  binding	
  +	
  WebView	
  traffic	
  going	
  over	
  HTTP	
  
*  If	
  you	
  control	
  one	
  of	
  these:	
  
*  HTTP	
  traffic,	
  DNS,	
  BGP…	
  

*  You	
  can:	
  
*  Steal	
  SMS	
  (including	
  two-­‐factor	
  auth	
  token),	
  take	
  photo,	
  record	
  audio,	
  
etc.,	
  if	
  the	
  app	
  has	
  needed	
  permissions	
  
	
  

*  Finding:	
  JBOH	
  in	
  Android	
  Ad	
  Libraries	
  
*  18	
  out	
  of	
  the	
  top	
  40	
  ad	
  libs	
  are	
  JBOH	
  (47%)	
  
*  Affect	
  more	
  than	
  5.2	
  billion	
  Google	
  Play	
  downloads	
  (>18%)	
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Smart	
  Locks	
  

OUTSIDE	
  View	
   INSIDE	
  View	
  

Side	
  View	
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Smart	
  Locks	
  

OUTSIDE	
  View	
   INSIDE	
  View	
  
Side	
  View	
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Case	
  Study:	
  Revocation	
  Evasion	
  

Phone	
  G	
  

Revoke	
  
Phone	
  
G’s	
  

access	
  

Lock	
  
Company’s	
  

Server	
  

Remove	
  access	
  to	
  	
  
Grant’s	
  door	
  



Page	
  13	
  

Case	
  Study:	
  Revocation	
  Evasion	
  

Mallory	
  steals	
  phone	
  and	
  switches	
  it	
  offline	
  

	
   Revoke	
  
Phone	
  G’s	
  
access	
  

Phone	
  G	
  

Done!	
  

Unlock!	
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Malware	
  enters	
  new	
  landscape	
  as	
  more	
  parts	
  of	
  the	
  
world	
  get	
  connected	
  

*  Legacy,	
  traditional	
  vulnerabilities	
  &	
  attacks	
  in	
  new	
  landscape	
  

*  New	
  classes	
  of	
  vulnerabilities	
  &	
  attacks	
  on	
  new	
  platform	
  

*  New	
  threat	
  models	
  with	
  new	
  technology	
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Consumer-­‐grade	
  BCI	
  Devices	
  

*  Price:	
  ≈	
  300	
  USD	
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What	
  if	
  an	
  EEG	
  gaming	
  app	
  is	
  malicious?	
  	
  
	
  

Secretly	
  reading	
  your	
  mind?	
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BCI	
  as	
  Side-­‐Channel	
  to	
  the	
  Brain	
  

Signal	
  Processing/	
  	
  
Classifier	
  

Stimuli	
  Ranking	
  

On	
  the	
  Feasibility	
  of	
  Side−Channel	
  Attacks	
  with	
  Brain−Computer	
  Interfaces	
  [USENIX	
  Security’12]	
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Attack	
  Stimuli	
  

Information tested: 
•  First digit of PIN 
•  Do	
  you	
  know	
  this	
  person?	
  
•  Do	
  you	
  have	
  an	
  account	
  at	
  this	
  bank?	
  
•  What	
  month	
  were	
  you	
  born	
  in?	
  
•  Where	
  do	
  you	
  live?	
  

On	
  the	
  Feasibility	
  of	
  Side−Channel	
  Attacks	
  with	
  Brain−Computer	
  Interfaces	
  [USENIX	
  Security’12]	
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BCI	
  as	
  Side-­‐Channel	
  to	
  the	
  Brain	
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(a) 1st digit PIN
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(b) Debit card

2 4 6 8 10 12 14
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n 

of
 e

xp
er

im
en

ts
 [%

]

 

 

SWLDA
bLogReg
bLogReg passive user
random guess

(c) Location
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(d) Month of birth
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(e) People
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(f) ATM machine

Figure 9: Cumulative statistics of the ranking of the correct answer according to the classification result. The faster this
measure converges towards 100%, the better the classifier. One can directly read the confidence intervals as follows:
In more than 20% of the experiments the bLogReg classifier ranked the correct face at the first position. In more than
40% it had the correct face among the first three guesses. Please note that for the passive user, the classifier was trained
on the people experiment and the corresponding curve in Fig. 9(e) would depict the training error.

answer as estimated by the respective classifier. For in-
stance, if the correct answer in the month of birth exper-
iment is ‘April’ and the classifier ranks this month at the
third position in the classification output, then x is 3. The
y-axis is the fraction (in %) of the users having the cor-
rect answer in at most ranking position x. In our exam-
ple with the month of birth, the point (x; y) = (3; 80%)
of the SWLDA classifier means that for 80% of the users
the correct bank was among the first three guesses of
SWLDA. Please note that we truncated the y-axis at 20%
to get a better resolution of the dynamic range.

Overall, one can observe that the attack does not al-
ways reveal the correct information on the first guess.
However, the classifiers perform significantly better than
the random attack. The SWLDA classifier provided the
most accurate estimates, except for the experiment on the
PIN and the debit card.

The correct answer was found by the first guess in
20% of the cases for the experiment with the PIN, the
debit cards, people, and the ATM machine. The location
was exactly guessed for 30% of users, month of birth for
almost 60% and the bank based on the ATM machines
for almost 30%. All classifiers performed consistently
good on the location experiment where the users actively

concentrated by counting the occurrence of the correct
answer. SWLDA performed exceptionally good on the
month of birth experiment, even though this experiment
was carried out without counting.

Relative reduction of entropy In order to quantify the
information leak that the BCI attack provides, we com-
pare the Shannon entropies of guessing the correct an-
swer for the classifiers against the entropy of the random
guess attack.

This measure models the guessing attack as a random
experiment with the random variable X . Depending of
the displayed stimuli, X can take different values. For in-
stance, in the PIN experiment, the set of hypotheses con-
sists of the numbers 0 to 9 and the attack guess would
then take one out of these numbers. Now, let’s assume
we have no other information than the set of hypotheses.
Then we would guess each answer with equal probabil-
ity. This is the random attack. Let the number of possible
answers (the cardinality of the set of hypotheses) be K,
then the entropy of the random attack is log2(K).

More formally, let the ranking of a classifier clf be
a(clf) =

�
a(clf)
1 , ..., a(clf)

K

⇥
, where the first-ranked answer

is a(clf)
1 , the second-ranked answer is a(clf)

2 , and so on. Let

10

On	
  the	
  Feasibility	
  of	
  Side−Channel	
  Attacks	
  with	
  Brain−Computer	
  Interfaces	
  [USENIX	
  Security’12]	
  

Experimental	
  results	
  from	
  30	
  participants	
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The	
  Dual	
  

The More Powerful Consumer-grade BCI devices are 

The More Powerful the attacks are 
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Malware	
  enters	
  new	
  landscape	
  as	
  more	
  parts	
  of	
  the	
  
world	
  get	
  connected	
  

*  Legacy,	
  traditional	
  vulnerabilities	
  &	
  attacks	
  in	
  new	
  landscape	
  

*  New	
  classes	
  of	
  vulnerabilities	
  &	
  attacks	
  on	
  new	
  platform	
  

*  New	
  threat	
  models	
  with	
  new	
  technology	
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Traditional	
  Defenses	
   Reactive	
  
Approaches	
  

* Detecting	
  and	
  blocking	
  malware	
  
	
  
*  Patching	
  exploited	
  vulnerabilities	
  
	
  	
  
* Most	
  of	
  commercial	
  security	
  solutions	
  today	
  
*  Network-­‐based	
  security	
  solution	
  
*  Host-­‐based	
  security	
  solution	
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Reactive	
  Defense	
  Is	
  Insufficient	
  

*  Cat-­‐&-­‐mouse	
  game	
  
*  Needs	
  to	
  change	
  as	
  attacks	
  change	
  

*  Malware	
  can	
  cause	
  real	
  physical	
  damage	
  

*  Deploying	
  patches	
  may	
  be	
  difficult	
  
*  May	
  require	
  additional	
  certification	
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Proactive	
  Defense	
  

*  Making	
  it	
  easier	
  to	
  build	
  secure	
  systems	
  
*  Free	
  of	
  certain	
  classes	
  of	
  vulnerabilities	
  

*  Approach	
  1:	
  reducing	
  vulnerabilities	
  by	
  automatic	
  bug	
  finding	
  

*  Approach	
  2:	
  secure	
  by	
  construction	
  
Proactive	
  Defense	
  

Bug	
  Finding	
  

Proactive	
  Defense	
  
Secure	
  by	
  Construction	
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Approach	
  1:	
  Automatic	
  Bug	
  Finding	
  

*  Challenges:	
  
*  Cannot	
  guarantee	
  finding	
  all	
  vulnerabilities	
  
*  High	
  false	
  positive/false	
  negative	
  
	
  

*  Asymmetry	
  
*  Attacker	
  only	
  needs	
  to	
  find	
  one	
  vulnerability	
  

*  Race	
  with	
  the	
  attacker	
  
*  Who	
  finds	
  the	
  vulnerability	
  first	
  

Proactive	
  Defense	
  
Bug	
  Finding	
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Approach	
  2:	
  Secure	
  by	
  Construction	
  

*  Define	
  security	
  properties	
  
*  Many	
  possibilities	
  

*  Security	
  mechanisms	
  at	
  different	
  stages	
  to	
  ensure	
  property	
  
*  Compilation	
  stage	
  
*  Program	
  instrumentation	
  &	
  transformation	
  post	
  compilation	
  
*  (Provably	
  secure)	
  security	
  primitives	
  

*  Practical	
  
*  Low	
  performance	
  overhead	
  
*  Compatibility	
  
*  Little	
  to	
  no	
  effort	
  from	
  developer	
  

Proactive	
  Defense	
  
Secure	
  by	
  Construction	
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Towards	
  Building	
  Secure	
  Cyber	
  Physical	
  Systems	
  by	
  
Construction	
  

*  Program	
  hardening	
  to	
  protect	
  against	
  exploits	
  

*  Security	
  as	
  a	
  service	
  for	
  managing	
  security	
  life	
  cycle	
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Program	
  Hardening	
  



Page	
  30	
  30	
  

Our	
  Solutions	
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Code	
  Pointer	
  Integrity	
  (CPI)	
  

*  Harden	
  complete	
  FreeBSD	
  distribution	
  (modulo	
  kernel)	
  
*  Protecting	
  against	
  control-­‐flow	
  hijacking	
  attacks	
  
*  >100	
  extra	
  packages	
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*  VTable	
  hijacking	
  is	
  popular	
  and	
  critical	
  
*  Real-­‐world	
  exploits	
  against	
  COTS	
  applications	
  exist.	
  
*  CPS	
  applications	
  also	
  have	
  a	
  large	
  attack	
  surface.	
  
*  Existing	
  solutions	
  are	
  not	
  perfect	
  
*  VTint	
  is	
  a	
  lightweight,	
  binary-­‐compatible	
  and	
  effective	
  defense	
  
against	
  VTable	
  hijacking,	
  similar	
  to	
  DEP	
  

VTint:	
  Defending	
  against	
  VTable	
  Hijacking	
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Program	
  Hardening	
  in	
  Cyber	
  Physical	
  Systems	
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*  Most	
  modules	
  have	
  virtual	
  calls	
  and	
  VTables	
  
*  The	
  attack	
  surface	
  is	
  large	
  enough	
  for	
  real	
  world	
  attacks.	
  

Attack	
  Surface	
  of	
  OpenDaVINCI	
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Towards	
  Building	
  Secure	
  Cyber	
  Physical	
  Systems	
  by	
  
Construction	
  

*  Program	
  hardening	
  to	
  protect	
  against	
  exploits	
  

*  Security	
  as	
  a	
  service	
  for	
  managing	
  security	
  life	
  cycle	
  
*  Device	
  onboarding/pairing	
  
*  Device	
  authentication/access	
  control	
  
*  Device	
  removal/transition	
  
*  Secure	
  software	
  update	
  
*  Secure	
  key	
  management	
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Access	
  Control	
  on	
  IoT	
  Devices	
  is	
  Important	
  

*  Sensitive	
  information	
  on	
  them	
  
*  Control	
  other	
  connected	
  IoT	
  devices	
  

36	
  

Healthcare Monitor Smartphone Wearable Smart lock 
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Current	
  Solutions	
  

*  Password	
  
*  Limited	
  applicability:	
  Some	
  IoT	
  devices	
  do	
  not	
  have	
  touchscreen	
  or	
  

keyboard	
  
*  Tedious:	
  Need	
  to	
  type	
  in	
  password	
  every	
  time	
  
*  Insecure:	
  Users	
  select	
  weak	
  passwords/reuse	
  passwords	
  

*  Biometrics	
  
*  Unreliable,	
  e.g.,	
  fingerprint	
  on	
  smartphones	
  might	
  require	
  multiple	
  

trials.	
  
*  Insecure:	
  Vulnerable	
  to	
  forgery	
  attacks	
  

37	
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Emerging	
  Scenarios	
  in	
  IoT	
  	
  

*  A	
  user	
  carries	
  a	
  IoT	
  device	
  which	
  has	
  already	
  authenticated	
  
the	
  user’s	
  identity.	
  
*  Vouching	
  device	
  
*  Authentication	
  on	
  another	
  IoT	
  device	
  
*  Authenticating	
  device	
  
*  Examples	
  
*  Vouching	
  device=wearable,	
  authenticating	
  device=smartphone	
  
*  Vouching	
  device=smartphone,	
  authenticating	
  device=smart	
  

lock	
  

38	
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Key	
  Observation	
  

39	
  

Close	
  when	
  the	
  legitimate	
  user	
  uses	
  
the	
  smartphone	
  

Far	
  away	
  when	
  an	
  attacker	
  tries	
  to	
  access	
  
the	
  smartphone	
  

Vouching	
  device=wearable	
  
	
  

Authenticating	
  device=smartphone	
  
	
  

Small	
  d	
   Large	
  d	
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Proximity-­‐based	
  Authentication	
  

*  Access	
  is	
  granted	
  if	
  and	
  only	
  if	
  the	
  distance	
  between	
  the	
  
authenticating	
  device	
  and	
  the	
  vouching	
  device	
  is	
  no	
  larger	
  than	
  
an	
  authentication	
  threshold	
  τ.	
  
*  Distance	
  estimation	
  techniques	
  using	
  radio	
  signals	
  such	
  as	
  
Bluetooth,	
  WiFi,	
  and	
  GPS	
  have	
  large	
  errors	
  on	
  commodity	
  
devices	
  
*  Our	
  goal:	
  secure,	
  reliable,	
  passive,	
  and	
  efficient	
  proximity-­‐based	
  
authentication	
  using	
  acoustic	
  signals	
  

40	
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PIANO	
  

*  The	
  two	
  devices	
  are	
  already	
  paired	
  via	
  a	
  secure	
  channel	
  
(e.g.,	
  Bluetooth)	
  

41	
  

Is the vouching 
device connected? 

No 

Reject 

Start Estimate 
distance d 

Yes 

Is d ≤ τ? 
No Yes 

Accept 
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Acoustic	
  Signal	
  Based	
  Distance	
  Estimation	
  

III  Play Signal SA  

IV Estimate tAA,tAV  

VI  Calculate dAV  

V  Send tVA - tVV  

I  Generate SA,SV   II  Send SA,SV 

III  Play Signal SV  

IV Estimate tVA,tVV  

Authenticating Device Vouching Device 

I  Play Signal SA  

II Estimate tAA,tAV  

IV Calculate dAV 

III  Send tVA - tVV  

I  Play Signal SV  

II Estimate tVA,tVV  

Authenticating Device Vouching Device 

Figure 2: Illustration of the basic protocol.

spectrum as the frequency-domain representation of the sig-
nal. The discrete Fourier transform and power spectrum can
be e�ciently computed by Fast Fourier Transform (FFT).

3.2 Basic Distance Estimation Protocol
Peng et al. [31] proposed a representative acoustic signal

based protocol to estimate distances between two devices.
This protocol was originally designed to perform localiza-
tion in pervasive computing. We call this protocol the basic
distance estimation protocol.

The protocol requires the authenticating device and the
vouching device to be equipped with a speaker and a mi-
crophone, and to be paired via a secure channel (e.g., Blue-
tooth). The two devices are paired means that they share
a secret key, which is used to exchange data securely using
encryption techniques. The pairing process requires user
confirmation but it only needs to be performed once. After
the two devices are paired, they can communicate over a
secure channel without user interactions.

In the protocol, the authenticating device plays a fixed
snippet of acoustic signal (denoted as S

A

) and the vouching
device plays another fixed snippet of acoustic signal (de-
noted as S

V

). We call S

A

and S

V

reference signals. In
the meantime, the two devices record acoustic signals using
their microphones. Then the authenticating device deter-
mines the timestamps when the two signals S

A

and S

V

ar-
rived at it, and we denote the timestamps as t

AA

and t

AV

,
respectively. Note that t

AA

does not necessarily equal the
timestamp when the authenticating device played the refer-
ence signal S

A

. This is because there is a lag between when
the system call to play the reference signal is made and when
the reference signal is actually played. Similarly, the vouch-
ing device determines the timestamps t

V A

and t

V V

when
the two signals S

A

and S

V

arrived at it, respectively.
The distance between the two devices can be estimated

by multiplying the speed of sound with the time that a ref-
erence signal takes to travel from one device to the other.
In particular, given the two timestamps t

AA

and t

V A

of the
reference signal S

A

, the distance can be estimated as:

d

A

= c · (t
V A

� t

AA

), (3)

where c is the speed of sound. Alternatively, the distance
can also be estimated using the timestamps t

AV

and t

V V

of
the reference signal S

V

, i.e., we have:

d

V

= c · (t
AV

� t

V V

) (4)

Both Equation 3 and Equation 4 can be used to estimate
the distance. However, using either of them requires the
two devices to synchronize their time coordinates. For in-
stance, Equation 3 requires that the timestamp t

V A

on the

Algorithm 1: Cross-correlation Algorithm

Input: A recorded signal X and a reference signal S.
Output: The location l of S in X.

1 begin
2 cc

max

= �1
3 S = 1

|S|
P|S|

j=1 S[j]

4 for i = 1 to |X|� |S|+ 1 with a step size s

c

do

5 X[i] = 1
|S|

P|S|
j=1 X[i+ j]

6 cc

i

=
P|S|

j=1(X[i+j]�X[i])(S[j]�S)
r

P|S|
j=1(X[i+j]�X[i])2

P|S|
j=1(S[j]�S)2

7 if cc

i

> cc

max

then
8 cc

max

= cc

i

9 l = i

10 end

11 end
12 return l

13 end

vouching device and the timestamp t

AA

on the authenticat-
ing device are measured from the same timing system, which
requires time synchronization on the two devices. However,
time synchronization is generally a challenging task, and an
error of 10 milliseconds in time synchronization could result
in an error of more than 3 meters in distance estimation.1

Therefore, Peng et al. [31] proposed to average the distances
obtained in Equation 3 and Equation 4 to avoid time syn-
chronization. Specifically, we have:

d

AV

=
1
2
(d

A

+ d

V

)

=
1
2
· c · ((t

V A

� t

V V

) + (t
AV

� t

AA

)), (5)

where d

AV

is the estimated distance between the two de-
vices. Equation 5 only requires the time di↵erences (t

V A

�
t

V V

) and (t
AV

� t

AA

), which can be estimated by the two
devices locally without time synchronization.
Figure 2 illustrates the basic protocol. Recall that the

two devices are already paired via a secure channel. We
summarize the protocol as the following steps:

• Step I: Both devices record and play acoustic signals.
The authenticating device and the vouching device play
S

A

and S

V

, respectively.
• Step II: The authenticating device determines the times-

tamps t
AA

and t

AV

, and the vouching device determines
the timestamps t

V A

and t

V V

.
• Step III: The vouching device sends the local time dif-

ference (t
V A

� t

V V

) to the authenticating device via a
secure channel (e.g., Bluetooth).

• Step IV: The authenticating device calculates the esti-
mated distance d

AV

using Equation 5.

Detecting reference signals via cross-correlation al-
gorithm: One missing component in the above protocol is
how to detect the four timestamps t

V A

, t
V V

, t
AA

, and t

AV

in
Step II. Peng et al. [31] used the cross-correlation algorithm
to detect the timestamps. Indeed, the cross-correlation al-
gorithm was widely used to detect the location of a reference
signal with a certain pattern in a long signal sequence [33,

1
This is because the speed of sound is around 340 m/s.
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Table 1: FNRs in di↵erent scenarios and for di↵erent au-
thentication thresholds.

0.5m 1.0m 1.5m 2.0m
O�ce 5.6% 2.8% 1.9% 1.4%
Home 9.5% 4.8% 3.2% 2.4%
Street 12.6% 6.3% 4.2% 3.1%

Restaurant 8.5% 4.2% 2.8% 2.1%
Multiple users 7.9% 4.0% 2.6% 2.0%

erence signals. We performed the experiments in a shared of-
fice. We observe that our algorithm performs orders of mag-
nitude better than the cross-correlation algorithm. Specif-
ically, average errors of the cross-correlation algorithm are
around 14 meters, which is two orders of magnitude higher
than the errors achieved by our frequency-based algorithm.
The reason is that our randomized reference signals con-
sist of discrete frequencies. Due to the frequency smooth-
ing e↵ect shown in Figure 7, the reference signals change
significantly in the time domain after they are played and
recorded. Therefore, cross-correlation algorithm tries to match
the original reference signal with the changed reference sig-
nal in the recorded signal, resulting in high errors.

6.3 FNRs and FPRs of Authentication
In the above section, we studied the accuracy of estimat-

ing a given distance. In this section, we show the accuracy
(FNR and FPR) of authentication decisions made by PI-
ANO. From Equation 1 and 2, we need to specify the work-
ing range d

m

, and the distributions f(d), g(d), and h(d̂ | d)
in order to estimate FNR and FPR. d

m

⇡ 10 meters in our
current prototype because we use Bluetooth to pair two de-
vices and the communication range of Bluetooth is around
10 meters on many commodity devices [25]. Since we do
not have prior knowledge about the distributions of real dis-
tances between the two devices when PIANO is used, we
consider f(d) and g(d) to be uniform distributions.

We denote by d

s

the maximum distance at which the ref-
erence signal played by one device can reach to the other.
With our current parameter setting, we have d

s

⇡ 2.5 me-
ters. When the real distance between the two devices is no
less than d

s

, PIANO rejects the access without estimating
the distance. Therefore, when d � d

s

, we assign h(d̂|d) as:
h(1 | d) = 1, and h(d̂ | d) = 0 for any d̂ 6= 1. Moreover,
given a real distance d (0 < d < d

s

) between the two de-
vices, we assume the distance estimated by PIANO follows
a Gaussian distribution (i.e., h(d̂ | d) = N (d̂; d, �

d

)) with
the real distance d as the mean and �

d

as the standard de-
viation.3 We note that this assumption does not contradict
with our results in the previous section because those dis-
tance estimation errors are absolute errors. Indeed, using
our collected data, we verified that the average estimated
distance is very close to the real distance. Furthermore, we
consider �

d

to be constant and we estimate it by averaging
the standard deviations at the four points (i.e., 0.5, 1.0, 1.5,
and 2.0) obtained in our experiments. Under our setting
of the distributions f(d), g(d), and h(d̂ | d), we can derive
analytical solutions for FNR and FPR, which enable us to
calculate them accurately and e�ciently. However, due to

3
We note that measurement errors could come from many inde-

pendent random noises, whose mean follows a Gaussian distribu-

tion according to the central limit theorem.

Table 2: FPRs (of Case II) in di↵erent scenarios and for
di↵erent authentication thresholds. FPRs of Case I are zero.

0.5m 1.0m 1.5m 2.0m
O�ce 0.3% 0.3% 0.3% 0.4%
Home 0.5% 0.5% 0.6% 0.6%
Street 0.7% 0.7% 0.7% 0.8%

Restaurant 0.4% 0.5% 0.4% 0.4%
Multiple users 0.4% 0.4% 0.5% 0.5%

the limited space, we do not show the analytical solutions.
Table 1 and Table 2 show the FNRs and FPRs (of Case II)

in di↵erent scenarios and for di↵erent authentication thresh-
olds. First, PIANO achieves low FNRs and very low FPRs.
For instance, in a shared o�ce, FNR is 2.8% and FPR is
0.3% when the authentication threshold is 1.0 meter. Sec-
ond, we observe that FNRs decrease quickly while FPRs
slightly increase as authentication threshold increases. For
instance, FNRs decrease by a half in all scenarios when the
authentication threshold increases from 0.5 to 1.0 meter.

6.4 Efficiency
We measure the e�ciency of our prototype in terms of

both time and energy consumption. PIANO is fast. In our
current implementation, one authentication can be finished
within around 3 seconds. Moreover, we use a tool called
PowerTutor [36] to measure the energy consumption of our
prototype. PowerTutor measures the battery energy con-
sumed by an Android app during a period of time. We find
that performing 100 times of authentication only consumes
0.6% of the smartphone battery energy.

6.5 Summary
In summary, we have the following observations:
• PIANO estimates distances between two devices with

small errors in di↵erent scenarios. Moreover, our frequency-
based signal detection algorithm achieves orders of mag-
nitude smaller errors than the cross-correlation algorithm
at detecting our randomized reference signals.

• PIANO achieves low FNRs and FPRs in various cases.
• PIANO is fast and has low energy consumption.

7. RELATED WORK
Authentication methods: Passwords are the most widely
used authentication method. However, it is well known
that passwords have various security and usability issues.
First, users select weak passwords in order to remember
them, which makes them vulnerable to guessing attacks. In-
deed, recent studies demonstrated the possibility of guessing
text passwords [6, 7, 8, 10, 11] and guessing graphical pass-
words [9]. Second, users reuse passwords [12, 13], making it
possible to guess the password to one device using the user’s
passwords from other devices or web services. Third, users
might choose to turn o↵ password authentication on PCs or
mobile devices due to its tediousness and inconvenience [14,
15, 16], which makes it possible for co-workers and passersby
to access private information on the devices.
We note that, although passwords have the above issues,

we do not aim to completely replace passwords with PIANO.
In fact, when users select secure passwords, PIANO can be
used together with passwords to enhance security and reli-
ability while not hurting usability of PIANO. In particular,
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nitude better than the cross-correlation algorithm. Specif-
ically, average errors of the cross-correlation algorithm are
around 14 meters, which is two orders of magnitude higher
than the errors achieved by our frequency-based algorithm.
The reason is that our randomized reference signals con-
sist of discrete frequencies. Due to the frequency smooth-
ing e↵ect shown in Figure 7, the reference signals change
significantly in the time domain after they are played and
recorded. Therefore, cross-correlation algorithm tries to match
the original reference signal with the changed reference sig-
nal in the recorded signal, resulting in high errors.

6.3 FNRs and FPRs of Authentication
In the above section, we studied the accuracy of estimat-

ing a given distance. In this section, we show the accuracy
(FNR and FPR) of authentication decisions made by PI-
ANO. From Equation 1 and 2, we need to specify the work-
ing range d

m

, and the distributions f(d), g(d), and h(d̂ | d)
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⇡ 10 meters in our
current prototype because we use Bluetooth to pair two de-
vices and the communication range of Bluetooth is around
10 meters on many commodity devices [25]. Since we do
not have prior knowledge about the distributions of real dis-
tances between the two devices when PIANO is used, we
consider f(d) and g(d) to be uniform distributions.

We denote by d

s

the maximum distance at which the ref-
erence signal played by one device can reach to the other.
With our current parameter setting, we have d

s

⇡ 2.5 me-
ters. When the real distance between the two devices is no
less than d

s

, PIANO rejects the access without estimating
the distance. Therefore, when d � d

s

, we assign h(d̂|d) as:
h(1 | d) = 1, and h(d̂ | d) = 0 for any d̂ 6= 1. Moreover,
given a real distance d (0 < d < d

s

) between the two de-
vices, we assume the distance estimated by PIANO follows
a Gaussian distribution (i.e., h(d̂ | d) = N (d̂; d, �
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)) with
the real distance d as the mean and �

d

as the standard de-
viation.3 We note that this assumption does not contradict
with our results in the previous section because those dis-
tance estimation errors are absolute errors. Indeed, using
our collected data, we verified that the average estimated
distance is very close to the real distance. Furthermore, we
consider �

d

to be constant and we estimate it by averaging
the standard deviations at the four points (i.e., 0.5, 1.0, 1.5,
and 2.0) obtained in our experiments. Under our setting
of the distributions f(d), g(d), and h(d̂ | d), we can derive
analytical solutions for FNR and FPR, which enable us to
calculate them accurately and e�ciently. However, due to
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We note that measurement errors could come from many inde-

pendent random noises, whose mean follows a Gaussian distribu-

tion according to the central limit theorem.
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the limited space, we do not show the analytical solutions.
Table 1 and Table 2 show the FNRs and FPRs (of Case II)

in di↵erent scenarios and for di↵erent authentication thresh-
olds. First, PIANO achieves low FNRs and very low FPRs.
For instance, in a shared o�ce, FNR is 2.8% and FPR is
0.3% when the authentication threshold is 1.0 meter. Sec-
ond, we observe that FNRs decrease quickly while FPRs
slightly increase as authentication threshold increases. For
instance, FNRs decrease by a half in all scenarios when the
authentication threshold increases from 0.5 to 1.0 meter.
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We measure the e�ciency of our prototype in terms of

both time and energy consumption. PIANO is fast. In our
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within around 3 seconds. Moreover, we use a tool called
PowerTutor [36] to measure the energy consumption of our
prototype. PowerTutor measures the battery energy con-
sumed by an Android app during a period of time. We find
that performing 100 times of authentication only consumes
0.6% of the smartphone battery energy.
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In summary, we have the following observations:
• PIANO estimates distances between two devices with

small errors in di↵erent scenarios. Moreover, our frequency-
based signal detection algorithm achieves orders of mag-
nitude smaller errors than the cross-correlation algorithm
at detecting our randomized reference signals.

• PIANO achieves low FNRs and FPRs in various cases.
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Authentication methods: Passwords are the most widely
used authentication method. However, it is well known
that passwords have various security and usability issues.
First, users select weak passwords in order to remember
them, which makes them vulnerable to guessing attacks. In-
deed, recent studies demonstrated the possibility of guessing
text passwords [6, 7, 8, 10, 11] and guessing graphical pass-
words [9]. Second, users reuse passwords [12, 13], making it
possible to guess the password to one device using the user’s
passwords from other devices or web services. Third, users
might choose to turn o↵ password authentication on PCs or
mobile devices due to its tediousness and inconvenience [14,
15, 16], which makes it possible for co-workers and passersby
to access private information on the devices.
We note that, although passwords have the above issues,
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