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•  1.1	  Billion	  smart	  phones	  
•  244	  Million	  smart	  meters	  
•  487	  Million	  e-‐readers	  and	  tablets	  
•  2.37	  Billion	  networked	  office	  devices	  
•  86	  Million	  medical	  devices	  
•  45	  Million	  connected	  automobiles	  
•  547	  Million	  connected	  appliances	  
•  45	  Million	  supervisory	  control	  and	  data	  acquisition	  (SCADA)	  
•  5+	  Billion	  other	  (non-‐phone/tablet/e-‐reader)	  electronic	  devices	  
•  Over	  50	  Billion	  connected	  devices	  by	  2020	  

The	  world	  is	  becoming	  more	  and	  more	  connected	  
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The	  world	  is	  becoming	  more	  and	  more	  connected	  

Malware	  enters	  new	  landscape	  as	  more	  
parts	  of	  the	  world	  get	  connected	  
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Malware	  enters	  new	  landscape	  as	  more	  parts	  of	  the	  
world	  get	  connected	  

*  Legacy,	  traditional	  vulnerabilities	  &	  attacks	  in	  new	  landscape	  
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First	  Security	  Analysis	  on	  Medical	  Devices	  

*  Cardiac Science G3 Plus model 9390A 
*  Analysis 
*  Manual reverse engineering using IDA Pro 
*  MDLink, AEDUpdate and device firmware 

*  Automatic binary analysis 
*  BitBlaze binary analysis infrastructure 
*  BitFuzz, the dynamic symbolic execution tool 

*  Vulnerabilities lead to distributed worm in AED 
1.  AED Firmware - Replacement 
2.  AEDUpdate  - Buffer overflow 
3.  AEDUpdate - Plain text user credentials 
4. MDLink  - Weak password scheme 

The case for Software Security Evaluations of Medical Devices [HealthSec’11]  
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Malware	  enters	  new	  landscape	  as	  more	  parts	  of	  the	  
world	  get	  connected	  

*  Legacy,	  traditional	  vulnerabilities	  &	  attacks	  in	  new	  landscape	  

*  New	  classes	  of	  vulnerabilities	  &	  attacks	  on	  new	  platform	  
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Malware	  

Vulnerable	  apps	  

Adware	  

Apps	  with	  undesired/unintended	  
Security	  Consequences	  

Automatic	  In-‐depth	  Analysis	  of	  3M+	  Android	  Apps	  

•  UC	  Berkeley/Ensighta	  Security	  Inc./FireEye	  Inc.	  
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Case	  Study	  in	  Android:	  JS	  Binding	  &	  JBOH	  
Vulnerability	  

*  JavaScript	  (JS)	  Binding	  	  
*  JS	  binding	  in	  WebView	  is	  designed	  to	  allow	  JS	  to	  access	  certain	  Java	  

objects	  &	  interfaces	  exposed	  to	  JS	  
	  

*  JavaScript	  (JS)	  Binding	  vulnerability	  
*  JS	  binding	  in	  WebView	  can	  be	  abused	  to	  execute	  arbitrary	  code	  on	  

device	  from	  JS	  
*  JS	  binding	  allows	  JS	  to	  use	  Java	  reflection	  to	  acquire	  a	  reference	  to	  a	  
runtime	  object	  
*  then	  execute	  arbitrary	  commands	  on	  the	  device	  

*  E.g.,	  Adobe	  pdf	  reader	  
*  A	  malicious	  PDF	  can	  read	  your	  files	  (accessible	  to	  Adobe	  PDF	  reader)	  on	  
Android	  and	  send	  them	  over	  the	  Internet	  
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JBOH	  Vulnerability	  
*  JavaScript-‐Binding-‐over-‐HTTP	  (JBOH)	  vulnerability	  
*  JS	  binding	  +	  WebView	  traffic	  going	  over	  HTTP	  
*  If	  you	  control	  one	  of	  these:	  
*  HTTP	  traffic,	  DNS,	  BGP…	  

*  You	  can:	  
*  Steal	  SMS	  (including	  two-‐factor	  auth	  token),	  take	  photo,	  record	  audio,	  
etc.,	  if	  the	  app	  has	  needed	  permissions	  
	  

*  Finding:	  JBOH	  in	  Android	  Ad	  Libraries	  
*  18	  out	  of	  the	  top	  40	  ad	  libs	  are	  JBOH	  (47%)	  
*  Affect	  more	  than	  5.2	  billion	  Google	  Play	  downloads	  (>18%)	  
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Smart	  Locks	  

OUTSIDE	  View	   INSIDE	  View	  

Side	  View	  
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Smart	  Locks	  

OUTSIDE	  View	   INSIDE	  View	  
Side	  View	  
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Case	  Study:	  Revocation	  Evasion	  

Phone	  G	  

Revoke	  
Phone	  
G’s	  

access	  

Lock	  
Company’s	  

Server	  

Remove	  access	  to	  	  
Grant’s	  door	  
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Case	  Study:	  Revocation	  Evasion	  

Mallory	  steals	  phone	  and	  switches	  it	  offline	  

	   Revoke	  
Phone	  G’s	  
access	  

Phone	  G	  

Done!	  

Unlock!	  
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Malware	  enters	  new	  landscape	  as	  more	  parts	  of	  the	  
world	  get	  connected	  

*  Legacy,	  traditional	  vulnerabilities	  &	  attacks	  in	  new	  landscape	  

*  New	  classes	  of	  vulnerabilities	  &	  attacks	  on	  new	  platform	  

*  New	  threat	  models	  with	  new	  technology	  
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Consumer-‐grade	  BCI	  Devices	  

*  Price:	  ≈	  300	  USD	  
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What	  if	  an	  EEG	  gaming	  app	  is	  malicious?	  	  
	  

Secretly	  reading	  your	  mind?	  
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BCI	  as	  Side-‐Channel	  to	  the	  Brain	  

Signal	  Processing/	  	  
Classifier	  

Stimuli	  Ranking	  

On	  the	  Feasibility	  of	  Side−Channel	  Attacks	  with	  Brain−Computer	  Interfaces	  [USENIX	  Security’12]	  
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Attack	  Stimuli	  

Information tested: 
•  First digit of PIN 
•  Do	  you	  know	  this	  person?	  
•  Do	  you	  have	  an	  account	  at	  this	  bank?	  
•  What	  month	  were	  you	  born	  in?	  
•  Where	  do	  you	  live?	  

On	  the	  Feasibility	  of	  Side−Channel	  Attacks	  with	  Brain−Computer	  Interfaces	  [USENIX	  Security’12]	  
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BCI	  as	  Side-‐Channel	  to	  the	  Brain	  
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(a) 1st digit PIN
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(b) Debit card
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(c) Location
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(d) Month of birth
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(e) People
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(f) ATM machine

Figure 9: Cumulative statistics of the ranking of the correct answer according to the classification result. The faster this
measure converges towards 100%, the better the classifier. One can directly read the confidence intervals as follows:
In more than 20% of the experiments the bLogReg classifier ranked the correct face at the first position. In more than
40% it had the correct face among the first three guesses. Please note that for the passive user, the classifier was trained
on the people experiment and the corresponding curve in Fig. 9(e) would depict the training error.

answer as estimated by the respective classifier. For in-
stance, if the correct answer in the month of birth exper-
iment is ‘April’ and the classifier ranks this month at the
third position in the classification output, then x is 3. The
y-axis is the fraction (in %) of the users having the cor-
rect answer in at most ranking position x. In our exam-
ple with the month of birth, the point (x; y) = (3; 80%)
of the SWLDA classifier means that for 80% of the users
the correct bank was among the first three guesses of
SWLDA. Please note that we truncated the y-axis at 20%
to get a better resolution of the dynamic range.

Overall, one can observe that the attack does not al-
ways reveal the correct information on the first guess.
However, the classifiers perform significantly better than
the random attack. The SWLDA classifier provided the
most accurate estimates, except for the experiment on the
PIN and the debit card.

The correct answer was found by the first guess in
20% of the cases for the experiment with the PIN, the
debit cards, people, and the ATM machine. The location
was exactly guessed for 30% of users, month of birth for
almost 60% and the bank based on the ATM machines
for almost 30%. All classifiers performed consistently
good on the location experiment where the users actively

concentrated by counting the occurrence of the correct
answer. SWLDA performed exceptionally good on the
month of birth experiment, even though this experiment
was carried out without counting.

Relative reduction of entropy In order to quantify the
information leak that the BCI attack provides, we com-
pare the Shannon entropies of guessing the correct an-
swer for the classifiers against the entropy of the random
guess attack.

This measure models the guessing attack as a random
experiment with the random variable X . Depending of
the displayed stimuli, X can take different values. For in-
stance, in the PIN experiment, the set of hypotheses con-
sists of the numbers 0 to 9 and the attack guess would
then take one out of these numbers. Now, let’s assume
we have no other information than the set of hypotheses.
Then we would guess each answer with equal probabil-
ity. This is the random attack. Let the number of possible
answers (the cardinality of the set of hypotheses) be K,
then the entropy of the random attack is log2(K).

More formally, let the ranking of a classifier clf be
a(clf) =

�
a(clf)
1 , ..., a(clf)

K

⇥
, where the first-ranked answer

is a(clf)
1 , the second-ranked answer is a(clf)

2 , and so on. Let

10

On	  the	  Feasibility	  of	  Side−Channel	  Attacks	  with	  Brain−Computer	  Interfaces	  [USENIX	  Security’12]	  

Experimental	  results	  from	  30	  participants	  
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The	  Dual	  

The More Powerful Consumer-grade BCI devices are 

The More Powerful the attacks are 
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Malware	  enters	  new	  landscape	  as	  more	  parts	  of	  the	  
world	  get	  connected	  

*  Legacy,	  traditional	  vulnerabilities	  &	  attacks	  in	  new	  landscape	  

*  New	  classes	  of	  vulnerabilities	  &	  attacks	  on	  new	  platform	  

*  New	  threat	  models	  with	  new	  technology	  
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Traditional	  Defenses	   Reactive	  
Approaches	  

* Detecting	  and	  blocking	  malware	  
	  
*  Patching	  exploited	  vulnerabilities	  
	  	  
* Most	  of	  commercial	  security	  solutions	  today	  
*  Network-‐based	  security	  solution	  
*  Host-‐based	  security	  solution	  
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Reactive	  Defense	  Is	  Insufficient	  

*  Cat-‐&-‐mouse	  game	  
*  Needs	  to	  change	  as	  attacks	  change	  

*  Malware	  can	  cause	  real	  physical	  damage	  

*  Deploying	  patches	  may	  be	  difficult	  
*  May	  require	  additional	  certification	  
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Proactive	  Defense	  

*  Making	  it	  easier	  to	  build	  secure	  systems	  
*  Free	  of	  certain	  classes	  of	  vulnerabilities	  

*  Approach	  1:	  reducing	  vulnerabilities	  by	  automatic	  bug	  finding	  

*  Approach	  2:	  secure	  by	  construction	  
Proactive	  Defense	  

Bug	  Finding	  

Proactive	  Defense	  
Secure	  by	  Construction	  
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Approach	  1:	  Automatic	  Bug	  Finding	  

*  Challenges:	  
*  Cannot	  guarantee	  finding	  all	  vulnerabilities	  
*  High	  false	  positive/false	  negative	  
	  

*  Asymmetry	  
*  Attacker	  only	  needs	  to	  find	  one	  vulnerability	  

*  Race	  with	  the	  attacker	  
*  Who	  finds	  the	  vulnerability	  first	  

Proactive	  Defense	  
Bug	  Finding	  
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Approach	  2:	  Secure	  by	  Construction	  

*  Define	  security	  properties	  
*  Many	  possibilities	  

*  Security	  mechanisms	  at	  different	  stages	  to	  ensure	  property	  
*  Compilation	  stage	  
*  Program	  instrumentation	  &	  transformation	  post	  compilation	  
*  (Provably	  secure)	  security	  primitives	  

*  Practical	  
*  Low	  performance	  overhead	  
*  Compatibility	  
*  Little	  to	  no	  effort	  from	  developer	  

Proactive	  Defense	  
Secure	  by	  Construction	  



Page	  28	  

Towards	  Building	  Secure	  Cyber	  Physical	  Systems	  by	  
Construction	  

*  Program	  hardening	  to	  protect	  against	  exploits	  

*  Security	  as	  a	  service	  for	  managing	  security	  life	  cycle	  	  
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Program	  Hardening	  
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Our	  Solutions	  
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Code	  Pointer	  Integrity	  (CPI)	  

*  Harden	  complete	  FreeBSD	  distribution	  (modulo	  kernel)	  
*  Protecting	  against	  control-‐flow	  hijacking	  attacks	  
*  >100	  extra	  packages	  



Page	  32	  

*  VTable	  hijacking	  is	  popular	  and	  critical	  
*  Real-‐world	  exploits	  against	  COTS	  applications	  exist.	  
*  CPS	  applications	  also	  have	  a	  large	  attack	  surface.	  
*  Existing	  solutions	  are	  not	  perfect	  
*  VTint	  is	  a	  lightweight,	  binary-‐compatible	  and	  effective	  defense	  
against	  VTable	  hijacking,	  similar	  to	  DEP	  

VTint:	  Defending	  against	  VTable	  Hijacking	  
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Program	  Hardening	  in	  Cyber	  Physical	  Systems	  
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*  Most	  modules	  have	  virtual	  calls	  and	  VTables	  
*  The	  attack	  surface	  is	  large	  enough	  for	  real	  world	  attacks.	  

Attack	  Surface	  of	  OpenDaVINCI	  
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Towards	  Building	  Secure	  Cyber	  Physical	  Systems	  by	  
Construction	  

*  Program	  hardening	  to	  protect	  against	  exploits	  

*  Security	  as	  a	  service	  for	  managing	  security	  life	  cycle	  
*  Device	  onboarding/pairing	  
*  Device	  authentication/access	  control	  
*  Device	  removal/transition	  
*  Secure	  software	  update	  
*  Secure	  key	  management	  
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Access	  Control	  on	  IoT	  Devices	  is	  Important	  

*  Sensitive	  information	  on	  them	  
*  Control	  other	  connected	  IoT	  devices	  

36	  

Healthcare Monitor Smartphone Wearable Smart lock 
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Current	  Solutions	  

*  Password	  
*  Limited	  applicability:	  Some	  IoT	  devices	  do	  not	  have	  touchscreen	  or	  

keyboard	  
*  Tedious:	  Need	  to	  type	  in	  password	  every	  time	  
*  Insecure:	  Users	  select	  weak	  passwords/reuse	  passwords	  

*  Biometrics	  
*  Unreliable,	  e.g.,	  fingerprint	  on	  smartphones	  might	  require	  multiple	  

trials.	  
*  Insecure:	  Vulnerable	  to	  forgery	  attacks	  

37	  
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Emerging	  Scenarios	  in	  IoT	  	  

*  A	  user	  carries	  a	  IoT	  device	  which	  has	  already	  authenticated	  
the	  user’s	  identity.	  
*  Vouching	  device	  
*  Authentication	  on	  another	  IoT	  device	  
*  Authenticating	  device	  
*  Examples	  
*  Vouching	  device=wearable,	  authenticating	  device=smartphone	  
*  Vouching	  device=smartphone,	  authenticating	  device=smart	  

lock	  

38	  
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Key	  Observation	  

39	  

Close	  when	  the	  legitimate	  user	  uses	  
the	  smartphone	  

Far	  away	  when	  an	  attacker	  tries	  to	  access	  
the	  smartphone	  

Vouching	  device=wearable	  
	  

Authenticating	  device=smartphone	  
	  

Small	  d	   Large	  d	  
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Proximity-‐based	  Authentication	  

*  Access	  is	  granted	  if	  and	  only	  if	  the	  distance	  between	  the	  
authenticating	  device	  and	  the	  vouching	  device	  is	  no	  larger	  than	  
an	  authentication	  threshold	  τ.	  
*  Distance	  estimation	  techniques	  using	  radio	  signals	  such	  as	  
Bluetooth,	  WiFi,	  and	  GPS	  have	  large	  errors	  on	  commodity	  
devices	  
*  Our	  goal:	  secure,	  reliable,	  passive,	  and	  efficient	  proximity-‐based	  
authentication	  using	  acoustic	  signals	  

40	  
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PIANO	  

*  The	  two	  devices	  are	  already	  paired	  via	  a	  secure	  channel	  
(e.g.,	  Bluetooth)	  

41	  

Is the vouching 
device connected? 

No 

Reject 

Start Estimate 
distance d 

Yes 

Is d ≤ τ? 
No Yes 

Accept 
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Acoustic	  Signal	  Based	  Distance	  Estimation	  

III  Play Signal SA  

IV Estimate tAA,tAV  

VI  Calculate dAV  

V  Send tVA - tVV  

I  Generate SA,SV   II  Send SA,SV 

III  Play Signal SV  

IV Estimate tVA,tVV  

Authenticating Device Vouching Device 

I  Play Signal SA  

II Estimate tAA,tAV  

IV Calculate dAV 

III  Send tVA - tVV  

I  Play Signal SV  

II Estimate tVA,tVV  

Authenticating Device Vouching Device 

Figure 2: Illustration of the basic protocol.

spectrum as the frequency-domain representation of the sig-
nal. The discrete Fourier transform and power spectrum can
be e�ciently computed by Fast Fourier Transform (FFT).

3.2 Basic Distance Estimation Protocol
Peng et al. [31] proposed a representative acoustic signal

based protocol to estimate distances between two devices.
This protocol was originally designed to perform localiza-
tion in pervasive computing. We call this protocol the basic
distance estimation protocol.

The protocol requires the authenticating device and the
vouching device to be equipped with a speaker and a mi-
crophone, and to be paired via a secure channel (e.g., Blue-
tooth). The two devices are paired means that they share
a secret key, which is used to exchange data securely using
encryption techniques. The pairing process requires user
confirmation but it only needs to be performed once. After
the two devices are paired, they can communicate over a
secure channel without user interactions.

In the protocol, the authenticating device plays a fixed
snippet of acoustic signal (denoted as S

A

) and the vouching
device plays another fixed snippet of acoustic signal (de-
noted as S

V

). We call S

A

and S

V

reference signals. In
the meantime, the two devices record acoustic signals using
their microphones. Then the authenticating device deter-
mines the timestamps when the two signals S

A

and S

V

ar-
rived at it, and we denote the timestamps as t

AA

and t

AV

,
respectively. Note that t

AA

does not necessarily equal the
timestamp when the authenticating device played the refer-
ence signal S

A

. This is because there is a lag between when
the system call to play the reference signal is made and when
the reference signal is actually played. Similarly, the vouch-
ing device determines the timestamps t

V A

and t

V V

when
the two signals S

A

and S

V

arrived at it, respectively.
The distance between the two devices can be estimated

by multiplying the speed of sound with the time that a ref-
erence signal takes to travel from one device to the other.
In particular, given the two timestamps t

AA

and t

V A

of the
reference signal S

A

, the distance can be estimated as:

d

A

= c · (t
V A

� t

AA

), (3)

where c is the speed of sound. Alternatively, the distance
can also be estimated using the timestamps t

AV

and t

V V

of
the reference signal S

V

, i.e., we have:

d

V

= c · (t
AV

� t

V V

) (4)

Both Equation 3 and Equation 4 can be used to estimate
the distance. However, using either of them requires the
two devices to synchronize their time coordinates. For in-
stance, Equation 3 requires that the timestamp t

V A

on the

Algorithm 1: Cross-correlation Algorithm

Input: A recorded signal X and a reference signal S.
Output: The location l of S in X.

1 begin
2 cc

max

= �1
3 S = 1

|S|
P|S|

j=1 S[j]

4 for i = 1 to |X|� |S|+ 1 with a step size s

c

do

5 X[i] = 1
|S|

P|S|
j=1 X[i+ j]

6 cc

i

=
P|S|

j=1(X[i+j]�X[i])(S[j]�S)
r

P|S|
j=1(X[i+j]�X[i])2

P|S|
j=1(S[j]�S)2

7 if cc

i

> cc

max

then
8 cc

max

= cc

i

9 l = i

10 end

11 end
12 return l

13 end

vouching device and the timestamp t

AA

on the authenticat-
ing device are measured from the same timing system, which
requires time synchronization on the two devices. However,
time synchronization is generally a challenging task, and an
error of 10 milliseconds in time synchronization could result
in an error of more than 3 meters in distance estimation.1

Therefore, Peng et al. [31] proposed to average the distances
obtained in Equation 3 and Equation 4 to avoid time syn-
chronization. Specifically, we have:

d

AV

=
1
2
(d

A

+ d

V

)

=
1
2
· c · ((t

V A

� t

V V

) + (t
AV

� t

AA

)), (5)

where d

AV

is the estimated distance between the two de-
vices. Equation 5 only requires the time di↵erences (t

V A

�
t

V V

) and (t
AV

� t

AA

), which can be estimated by the two
devices locally without time synchronization.
Figure 2 illustrates the basic protocol. Recall that the

two devices are already paired via a secure channel. We
summarize the protocol as the following steps:

• Step I: Both devices record and play acoustic signals.
The authenticating device and the vouching device play
S

A

and S

V

, respectively.
• Step II: The authenticating device determines the times-

tamps t
AA

and t

AV

, and the vouching device determines
the timestamps t

V A

and t

V V

.
• Step III: The vouching device sends the local time dif-

ference (t
V A

� t

V V

) to the authenticating device via a
secure channel (e.g., Bluetooth).

• Step IV: The authenticating device calculates the esti-
mated distance d

AV

using Equation 5.

Detecting reference signals via cross-correlation al-
gorithm: One missing component in the above protocol is
how to detect the four timestamps t

V A

, t
V V

, t
AA

, and t

AV

in
Step II. Peng et al. [31] used the cross-correlation algorithm
to detect the timestamps. Indeed, the cross-correlation al-
gorithm was widely used to detect the location of a reference
signal with a certain pattern in a long signal sequence [33,

1
This is because the speed of sound is around 340 m/s.

d	  
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Table 1: FNRs in di↵erent scenarios and for di↵erent au-
thentication thresholds.

0.5m 1.0m 1.5m 2.0m
O�ce 5.6% 2.8% 1.9% 1.4%
Home 9.5% 4.8% 3.2% 2.4%
Street 12.6% 6.3% 4.2% 3.1%

Restaurant 8.5% 4.2% 2.8% 2.1%
Multiple users 7.9% 4.0% 2.6% 2.0%

erence signals. We performed the experiments in a shared of-
fice. We observe that our algorithm performs orders of mag-
nitude better than the cross-correlation algorithm. Specif-
ically, average errors of the cross-correlation algorithm are
around 14 meters, which is two orders of magnitude higher
than the errors achieved by our frequency-based algorithm.
The reason is that our randomized reference signals con-
sist of discrete frequencies. Due to the frequency smooth-
ing e↵ect shown in Figure 7, the reference signals change
significantly in the time domain after they are played and
recorded. Therefore, cross-correlation algorithm tries to match
the original reference signal with the changed reference sig-
nal in the recorded signal, resulting in high errors.

6.3 FNRs and FPRs of Authentication
In the above section, we studied the accuracy of estimat-

ing a given distance. In this section, we show the accuracy
(FNR and FPR) of authentication decisions made by PI-
ANO. From Equation 1 and 2, we need to specify the work-
ing range d

m

, and the distributions f(d), g(d), and h(d̂ | d)
in order to estimate FNR and FPR. d

m

⇡ 10 meters in our
current prototype because we use Bluetooth to pair two de-
vices and the communication range of Bluetooth is around
10 meters on many commodity devices [25]. Since we do
not have prior knowledge about the distributions of real dis-
tances between the two devices when PIANO is used, we
consider f(d) and g(d) to be uniform distributions.

We denote by d

s

the maximum distance at which the ref-
erence signal played by one device can reach to the other.
With our current parameter setting, we have d

s

⇡ 2.5 me-
ters. When the real distance between the two devices is no
less than d

s

, PIANO rejects the access without estimating
the distance. Therefore, when d � d

s

, we assign h(d̂|d) as:
h(1 | d) = 1, and h(d̂ | d) = 0 for any d̂ 6= 1. Moreover,
given a real distance d (0 < d < d

s

) between the two de-
vices, we assume the distance estimated by PIANO follows
a Gaussian distribution (i.e., h(d̂ | d) = N (d̂; d, �

d

)) with
the real distance d as the mean and �

d

as the standard de-
viation.3 We note that this assumption does not contradict
with our results in the previous section because those dis-
tance estimation errors are absolute errors. Indeed, using
our collected data, we verified that the average estimated
distance is very close to the real distance. Furthermore, we
consider �

d

to be constant and we estimate it by averaging
the standard deviations at the four points (i.e., 0.5, 1.0, 1.5,
and 2.0) obtained in our experiments. Under our setting
of the distributions f(d), g(d), and h(d̂ | d), we can derive
analytical solutions for FNR and FPR, which enable us to
calculate them accurately and e�ciently. However, due to

3
We note that measurement errors could come from many inde-

pendent random noises, whose mean follows a Gaussian distribu-

tion according to the central limit theorem.

Table 2: FPRs (of Case II) in di↵erent scenarios and for
di↵erent authentication thresholds. FPRs of Case I are zero.

0.5m 1.0m 1.5m 2.0m
O�ce 0.3% 0.3% 0.3% 0.4%
Home 0.5% 0.5% 0.6% 0.6%
Street 0.7% 0.7% 0.7% 0.8%

Restaurant 0.4% 0.5% 0.4% 0.4%
Multiple users 0.4% 0.4% 0.5% 0.5%

the limited space, we do not show the analytical solutions.
Table 1 and Table 2 show the FNRs and FPRs (of Case II)

in di↵erent scenarios and for di↵erent authentication thresh-
olds. First, PIANO achieves low FNRs and very low FPRs.
For instance, in a shared o�ce, FNR is 2.8% and FPR is
0.3% when the authentication threshold is 1.0 meter. Sec-
ond, we observe that FNRs decrease quickly while FPRs
slightly increase as authentication threshold increases. For
instance, FNRs decrease by a half in all scenarios when the
authentication threshold increases from 0.5 to 1.0 meter.

6.4 Efficiency
We measure the e�ciency of our prototype in terms of

both time and energy consumption. PIANO is fast. In our
current implementation, one authentication can be finished
within around 3 seconds. Moreover, we use a tool called
PowerTutor [36] to measure the energy consumption of our
prototype. PowerTutor measures the battery energy con-
sumed by an Android app during a period of time. We find
that performing 100 times of authentication only consumes
0.6% of the smartphone battery energy.

6.5 Summary
In summary, we have the following observations:
• PIANO estimates distances between two devices with

small errors in di↵erent scenarios. Moreover, our frequency-
based signal detection algorithm achieves orders of mag-
nitude smaller errors than the cross-correlation algorithm
at detecting our randomized reference signals.

• PIANO achieves low FNRs and FPRs in various cases.
• PIANO is fast and has low energy consumption.

7. RELATED WORK
Authentication methods: Passwords are the most widely
used authentication method. However, it is well known
that passwords have various security and usability issues.
First, users select weak passwords in order to remember
them, which makes them vulnerable to guessing attacks. In-
deed, recent studies demonstrated the possibility of guessing
text passwords [6, 7, 8, 10, 11] and guessing graphical pass-
words [9]. Second, users reuse passwords [12, 13], making it
possible to guess the password to one device using the user’s
passwords from other devices or web services. Third, users
might choose to turn o↵ password authentication on PCs or
mobile devices due to its tediousness and inconvenience [14,
15, 16], which makes it possible for co-workers and passersby
to access private information on the devices.
We note that, although passwords have the above issues,

we do not aim to completely replace passwords with PIANO.
In fact, when users select secure passwords, PIANO can be
used together with passwords to enhance security and reli-
ability while not hurting usability of PIANO. In particular,

FNRs	  in	  different	  environments	  and	  	  
with	  different	  authentication	  thresholds	  
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nitude better than the cross-correlation algorithm. Specif-
ically, average errors of the cross-correlation algorithm are
around 14 meters, which is two orders of magnitude higher
than the errors achieved by our frequency-based algorithm.
The reason is that our randomized reference signals con-
sist of discrete frequencies. Due to the frequency smooth-
ing e↵ect shown in Figure 7, the reference signals change
significantly in the time domain after they are played and
recorded. Therefore, cross-correlation algorithm tries to match
the original reference signal with the changed reference sig-
nal in the recorded signal, resulting in high errors.

6.3 FNRs and FPRs of Authentication
In the above section, we studied the accuracy of estimat-

ing a given distance. In this section, we show the accuracy
(FNR and FPR) of authentication decisions made by PI-
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ing range d
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vices and the communication range of Bluetooth is around
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not have prior knowledge about the distributions of real dis-
tances between the two devices when PIANO is used, we
consider f(d) and g(d) to be uniform distributions.

We denote by d
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the maximum distance at which the ref-
erence signal played by one device can reach to the other.
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ters. When the real distance between the two devices is no
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the distance. Therefore, when d � d
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h(1 | d) = 1, and h(d̂ | d) = 0 for any d̂ 6= 1. Moreover,
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) between the two de-
vices, we assume the distance estimated by PIANO follows
a Gaussian distribution (i.e., h(d̂ | d) = N (d̂; d, �
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)) with
the real distance d as the mean and �
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as the standard de-
viation.3 We note that this assumption does not contradict
with our results in the previous section because those dis-
tance estimation errors are absolute errors. Indeed, using
our collected data, we verified that the average estimated
distance is very close to the real distance. Furthermore, we
consider �

d

to be constant and we estimate it by averaging
the standard deviations at the four points (i.e., 0.5, 1.0, 1.5,
and 2.0) obtained in our experiments. Under our setting
of the distributions f(d), g(d), and h(d̂ | d), we can derive
analytical solutions for FNR and FPR, which enable us to
calculate them accurately and e�ciently. However, due to
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tion according to the central limit theorem.
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the limited space, we do not show the analytical solutions.
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in di↵erent scenarios and for di↵erent authentication thresh-
olds. First, PIANO achieves low FNRs and very low FPRs.
For instance, in a shared o�ce, FNR is 2.8% and FPR is
0.3% when the authentication threshold is 1.0 meter. Sec-
ond, we observe that FNRs decrease quickly while FPRs
slightly increase as authentication threshold increases. For
instance, FNRs decrease by a half in all scenarios when the
authentication threshold increases from 0.5 to 1.0 meter.
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We measure the e�ciency of our prototype in terms of
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within around 3 seconds. Moreover, we use a tool called
PowerTutor [36] to measure the energy consumption of our
prototype. PowerTutor measures the battery energy con-
sumed by an Android app during a period of time. We find
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In summary, we have the following observations:
• PIANO estimates distances between two devices with
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nitude smaller errors than the cross-correlation algorithm
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• PIANO is fast and has low energy consumption.

7. RELATED WORK
Authentication methods: Passwords are the most widely
used authentication method. However, it is well known
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First, users select weak passwords in order to remember
them, which makes them vulnerable to guessing attacks. In-
deed, recent studies demonstrated the possibility of guessing
text passwords [6, 7, 8, 10, 11] and guessing graphical pass-
words [9]. Second, users reuse passwords [12, 13], making it
possible to guess the password to one device using the user’s
passwords from other devices or web services. Third, users
might choose to turn o↵ password authentication on PCs or
mobile devices due to its tediousness and inconvenience [14,
15, 16], which makes it possible for co-workers and passersby
to access private information on the devices.
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with	  different	  authentication	  thresholds	  

*  Efficiency	  
*  3s	  per	  authentication	  
*  100	  times	  of	  authentication	  consumes	  0.6%	  of	  smartphone	  

battery	  
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Malware	  enters	  new	  landscape	  as	  more	  parts	  of	  the	  
world	  get	  connected	  

*  Legacy,	  traditional	  vulnerabilities	  &	  attacks	  in	  new	  landscape	  

*  New	  classes	  of	  vulnerabilities	  &	  attacks	  on	  new	  platform	  

*  New	  threat	  models	  with	  new	  technology	  
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Page	  46	  

Towards	  Building	  Secure	  Cyber	  Physical	  Systems	  by	  
Construction	  

*  Program	  hardening	  to	  protect	  against	  exploits	  

*  Security	  as	  a	  service	  for	  managing	  security	  life	  cycle	  
*  Device	  onboarding/pairing	  
*  Device	  authentication/access	  control	  
*  Device	  removal/transition	  
*  Secure	  software	  update	  
*  Secure	  key	  management	  


