

Metrization, Simulation, and First–Order Approximation for Networked CPS

Sam A. Burden and S. Shankar Sastry EECS at University of California, Berkeley

Nonclassical dynamics in CPS

Arises from abrupt physical and logical transitions

Nonsmooth and discontinuous transitions:

- Voltage and current limits in electrical power transmission systems.

- Topology switches and shocks in water and electrical infrastructures.

- Queue saturation in air and street traffic.
- Mode transition in supervisory control.

Isolated transitions can be "smoothed" (arXiv:1308.4158) enables direct generalization of classical control techniques to *hybrid* systems.

New challenges for interconnected CPS

Networked CPS undergo interdependent transitions

Combinatorial increase in complexity $D_0 \xrightarrow{D_0} 1$ D_2 Exponential number of discrete modes; factorial number of mode sequences

Intrinsically nonsmooth dynamics

In contrast to previous case, coupled dynamics cannot be "smoothed"

New challenges require new tools We derive techniques for stability, sensitivity, controllability, & optimality.

