

Guarding Networks Through Heterogeneous Mobile Guards

Waseem Abbas and Xenofon Koutsoukos

Vanderbilt University

Motivation

- Mobile guards (such as UAVs) are being increasingly used for the surveillance and monitoring of critical infrastructure networks such as gas and oil pipelines.
- * Advantages include
 - * increased efficiency,
 - deployment in remote areas,
 - cost-effectiveness,
 - * immediate response etc.

British petroleum testing for use of UAVs in pipeline inspection at Prudhoe Bay, Alaska. (Source: https://www.youtube.com/watch?v=UOorgiS3wgw)

Outline

Network monitoring through mobile guards

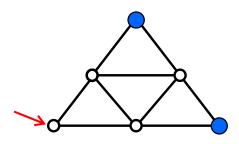
A graph-theoretic problem formulation

Mobile guards deployment to detect and respond to a sequence of events

Eternal security in graphs

Examples

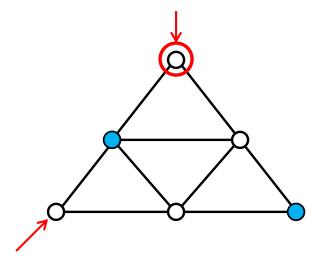
Further directions


Monitoring through Mobile Guards

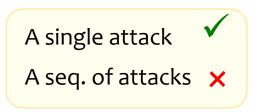
- * Mobile guards can be equipped with sensors that can detect some event or measure some physical parameter within a certain *range*
- * Mobile guards can perform remote attestation of cyber infrastructure devices by executing a query-response protocol
- * Using mobile guards (possibly in conjunction with static sensors), how can we
- *efficiently* monitor networks for concerned events (intrusion detection, leak detection etc.)?
- * **Challenges:** Using the capabilities of mobile guards (such as ranges) and considering the network structure
 - * How many guards should be deployed?
 - * At what critical points within the networks?
 - * What could be the movement strategies of guards?

Monitoring through Mobile Guards

- * We study the problem using a **graph-theoretic s**et up.
- * A network is modeled by a graph
- * Mobile guards are located at nodes
- They can detect an event that occurs at some node within its range (k-hop), which depends on physical aspects of the network.

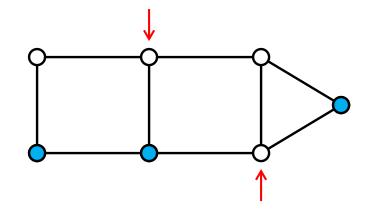


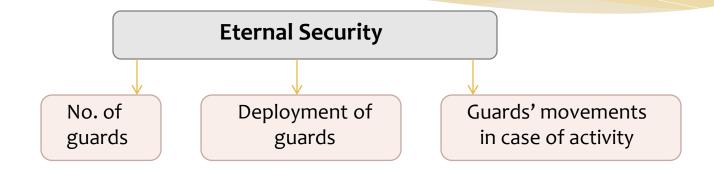
- * Mobile guards respond by moving towards the affected node
- We want to achieve complete monitoring of the network at all times even when guards move within the network in response to a *sequence* of events

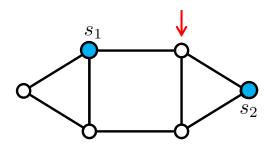


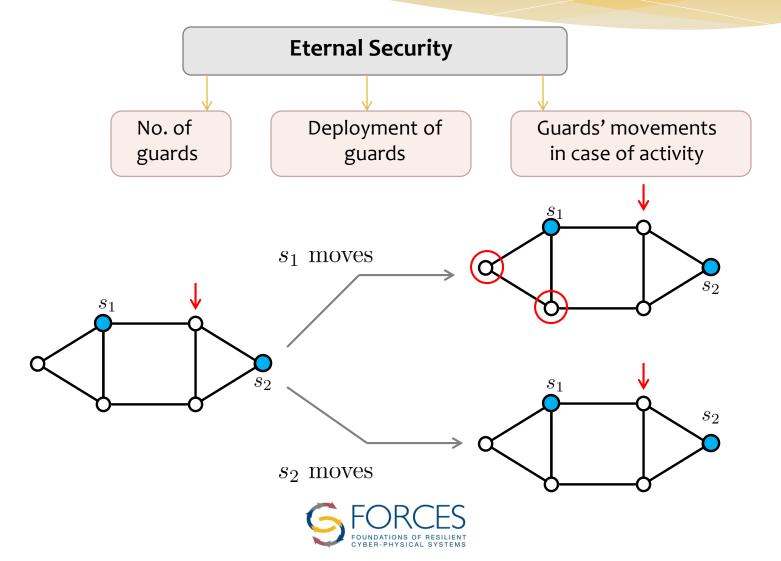
Case: Single Event

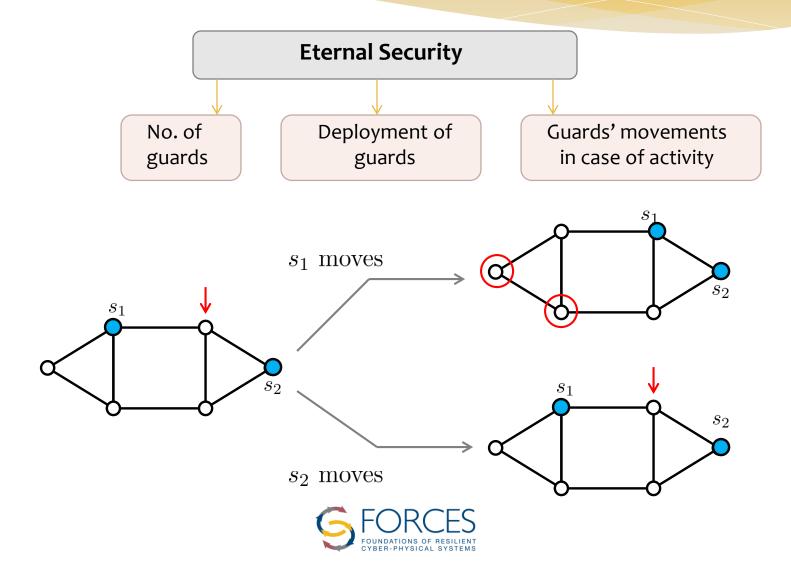
- * How to distribute guards such that each node is protected by at least one guard?
- * Ans. **Dominating set :** $D \subseteq V$, s.t. $\bigcup_{v_i \in D} \mathcal{N}[v_i] = V$



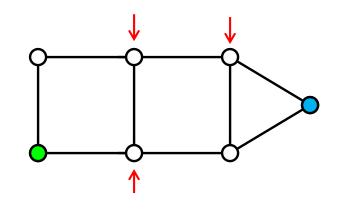

Case: Sequence of Events

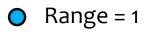

- * Distribute guards that can defend against a **sequence** of single vertex attacks by a single guard shift along the edges.
- * Ans. Eternal security in graphs

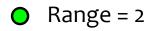

Major Issues



Major Issues

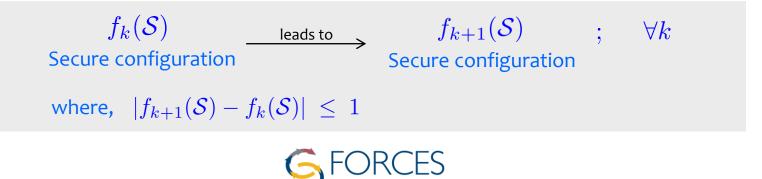


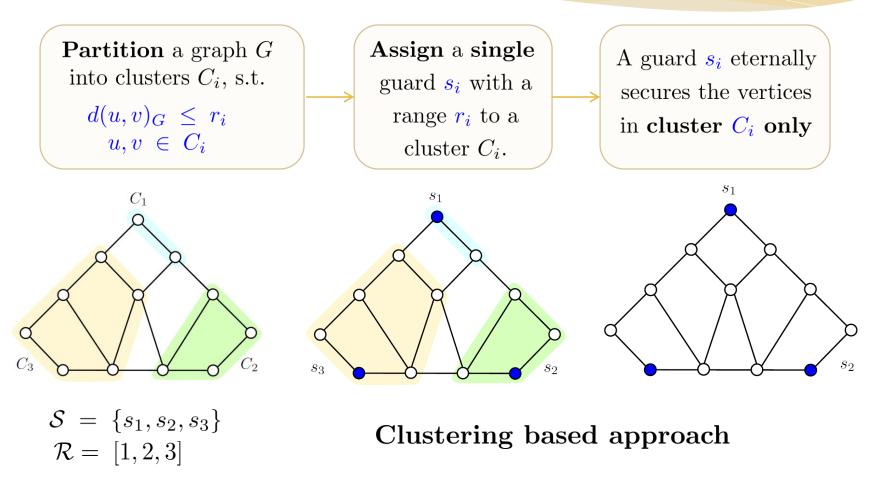

Major Issues



Heterogeneous Guards

* Heterogeneity: Guards may have different ranges from each other.





Problem Formulation

- * Set of guards: $S = \{s_1, \cdots, s_\sigma\}$; Ranges: $\mathcal{R} = [r_1, \cdots, r_\sigma]$
- * Vertex at which s_i is located at time $k = f_k(s_i)$ * $f: (S,k) \to V$
- * Vertices at which guards are located at $k=f_k(\mathcal{S})=\{f_k(s_i):\ s_i\in\mathcal{S}\}$
- * A vertex v is secured whenever $\exists s_i: d(f_k(s_i), v)_G \leq r_i$
- * $f_k(S)$ is a **secure configuration** whenever all vertices are secured.
- * Eternal Security:

A Solution (Clustering)

Clustering Algorithm

Inputs:	$ \begin{array}{ll} \boldsymbol{G} \; ; \boldsymbol{\alpha} = [\alpha_1, \cdots, \alpha_\sigma] \; ; \boldsymbol{\beta} = [\beta_1, \cdots, \beta_\sigma] \\ \text{Network Guards' ranges} & \text{Guards' numbers} \end{array} $
Graph powers:	$oldsymbol{G}^{lpha_1} oldsymbol{G}^{lpha_2} oldsymbol{\cdots} oldsymbol{G}^{lpha_\sigma}$
Maximal cliques:	$egin{array}{cccccccccccccccccccccccccccccccccccc$
Greedy step:	Pick the column, $m \in oldsymbol{M}_j$, with the max. no. of uncovered nodes
Condition:	If guards with range $lpha_j$ used are less than eta_j
Cluster:	Make a cluster consisting of nodes in m
Update ${\cal M}$ and repeat the greedy steps	

 G^2

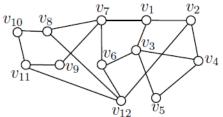
 $\begin{array}{c}
 0 & 1 \\
 0 & 0
\end{array}$

 $\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}$

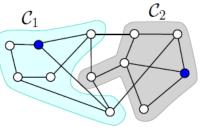
 $\boldsymbol{\alpha} = \begin{bmatrix} 1 & 2 \end{bmatrix}; \qquad \boldsymbol{\beta} = \begin{bmatrix} 1 & 1 \end{bmatrix};$

 $oldsymbol{M}_1 =$

 $\mathcal{M} =$

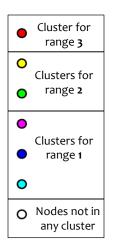

Clustering Algorithm

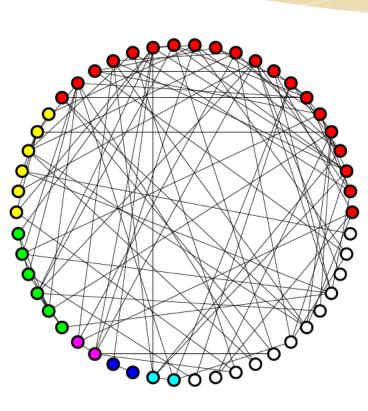
Proposition:


- Clustering is NP-hard.
- For a given set of guards along with their ranges, if *Op* is the maximum number of vertices that can be included in some cluster, then the algorithm includes at least (1 1/e).Op number of vertices in some cluster.
- If there are l clusters, and each node is equally likely to be attacked, then the average distance moved by a guard is

$$\frac{1}{n} \left[\sum_{i=1}^{n} \ell \frac{1}{(n_i - 1)} \sum_{u, v \in C_i} d_G(u, v) \right]$$

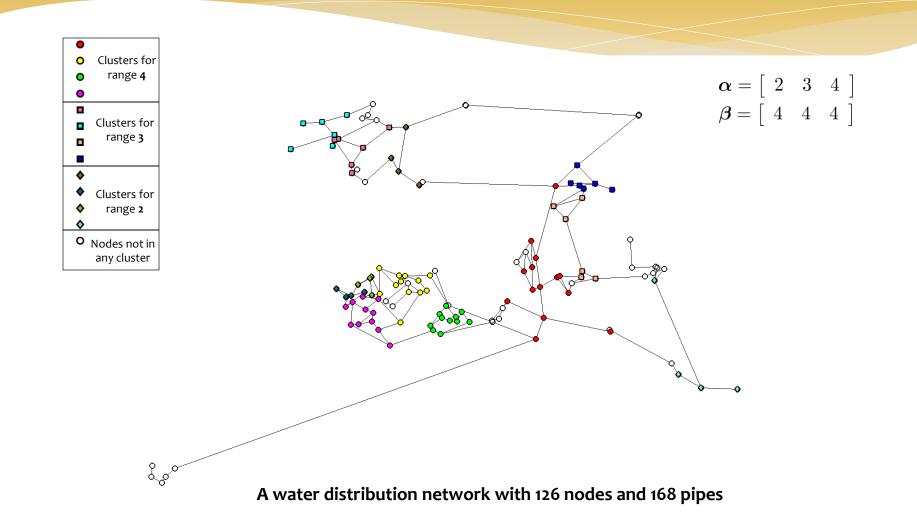
The clustering here is related to the low diameter decomposition of a graph.
However,


We cannot obtain two induced subgraphs, each having a diameter 2



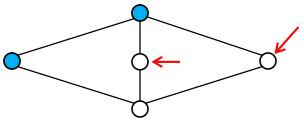
It is possible to eternally secure a graph with two guards each having a range 2

Example



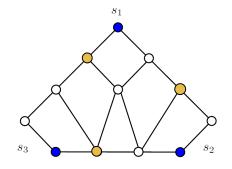
 $\boldsymbol{\alpha} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $\boldsymbol{\beta} = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$

A random (ER) graph with 50 nodes and p=0.08 (average degree = 4)


Example

Further Directions

- Communication between guards: What are the implications if moving guards with heterogeneous ranges also communicate with each other? How the solution will change?
 - e.g., If multiple guards move in response to an activity on a node, the number of guards required for eternal security might be lesser.

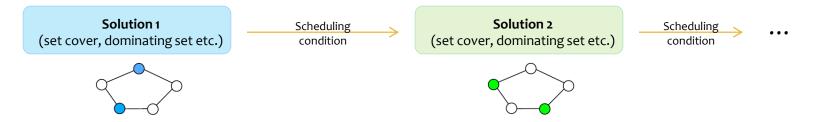


- * **Comparing solutions:** The pairs (α_1, β_1) and (α_2, β_2) are both solutions. How can we associate a cost with a solution?
- * **Dynamic graphs:** How can we solve eternal security problem for changing network topology?

Further Directions

- * **Static and Mobile guards:** How can we combine (inexpensive) static sensors and sophisticated mobile guards to obtain more efficient monitoring in CPS?
 - * e.g., Fault detection and localization in flow networks

- (inexpensive) static sensors
- mobile guards



Thank You

- * Eternal security is an example of 'rotating between solutions' concept.
 - * Example: Consider a typical sensor scheduling problem

- In the case of eternal security, a solution remains a solution whenever one of the guards moves towards its 'neighbors' in response to an activity on the neighbor node
 - Scheduling condition: An event on one of the nodes (discrete event dynamic system)
 - New solution: Previous solution except a change in the position of one of the guards

