

Economics of resource allocation for CPS in the presence of strategic attackers

Galina Schwartz¹

With Patrick Loiseau² and S. Shankar Sastry¹
¹UC Berkeley (USA), ²EURECOM (France)

North American Aerospace Defense Command(NORAD)

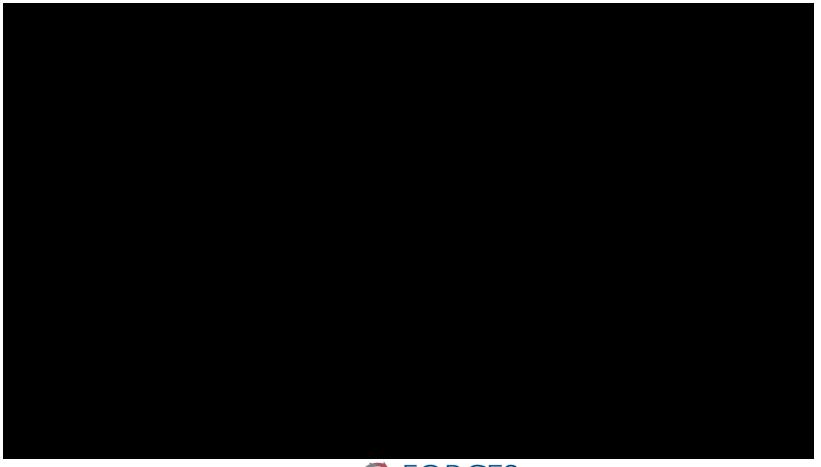
ALASKAN REGIGI

* NORAD

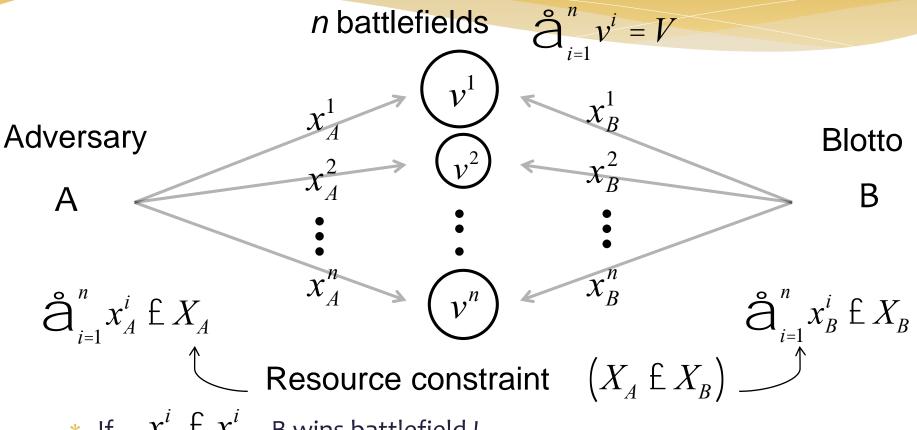
AADS=Alaska Air Defense Sector WADS=Western Air Defense Sector CADS=Canadian Air Defence Sector EADS=Eastern Air Defense Sector

37

September 11 airspace shutdown [a movie]



The Colonel Blotto game Original formulation [Borel (1921)]



- If $x_A^i \to x_R^i$ B wins battlefield I
 - (a tie is resolved in favor of a stronger player)
- Payoffs: a sum of values of won battlefields

North American Aerospace Defense Command (NORAD)

N. ASKAN REGION

* NORAD

Western Air Defense Sector Canadian Air Defense Sector Eastern Air Defense Sector

AADS=Alaska Air Defense Sector WADS=Western Air Defense Sector

CADS=Canadian Air Defence Sector EADS=Eastern Air Defense Sector

37

Western Air Defense | Air Sector

Canadian Defense Sector

Eastern Air Defense Sector

Example (intuition)

* 3 identical fields:
$$v^1 = v^2 = v^3 = 1 = V = 3$$

* 2 identical players: $X_A = X_R = 1$

$$X_A = X_B = 1$$

- *

 there exists a symmetric equilibrium w/ equal expected payoffs $P_A = P_B = 3/2$
- * Pure strategy is not an equilibrium. Let

$$x_A^{1,2,3} = 1/3$$

* Then, player B optimal response: $x_R^{1,2} = 1/2$ and $x_R^3 = 0$

$$P_B = 2$$
 and $P_A = 1$

* Player A could improve by using a mixed strategy

Western Air Defense Sector

Canadian Air Defense Sector

Eastern Air Defense **Sector**

Example continued (simplified, for intuition)

* 3 identical fields:

$$v^1 = v^2 = v^3 = 1 \implies V = 3$$

2 identical players: $X_A = X_R = 1$

$$X_A = X_B = 1$$

* Simplification: budget constraint holds "on average" (in expectation). Then, equilibrium strategies are:

$$x_{A}^{i} \sim Uniform \mathring{\xi}\mathring{e}0, \frac{2v^{i}}{V} X_{B} \mathring{u}\overset{\grave{\mathsf{U}}\ddot{\mathsf{U}}}{\mathring{u}} = Uniform \mathring{\xi}\mathring{e}0, \frac{2\mathring{\mathsf{U}}\ddot{\mathsf{U}}}{3} \mathring{u}\overset{\grave{\mathsf{U}}\ddot{\mathsf{U}}}{\mathring{e}}$$

$$x_{B}^{i} \sim Uniform \mathring{\xi}_{\hat{\mathbb{C}}}^{\hat{\mathbb{C}}}0, \frac{2v^{i}}{V} X_{B} \mathring{\mathfrak{U}}_{\hat{\mathbb{C}}}^{\hat{\mathbb{C}}} = Uniform \mathring{\xi}_{\hat{\mathbb{C}}}^{\hat{\mathbb{C}}}0, \frac{2\mathring{\mathsf{U}}_{\hat{\mathbb{C}}}^{\hat{\mathbb{C}}}}{3\mathring{\mathbb{C}}_{\hat{\mathbb{C}}}^{\hat{\mathbb{C}}}}$$

* I.e., uniformly distributed on [0, 2/3]. in expectation, each field has 1/3. Payoffs: $P_{A} = P_{B} = 3/2$

Western Air Defense **Sector**

Canadian Air Defense Sector

Eastern Air **Defense Sector**

Discussion of the example

* 3 identical fields:

$$v^1 = v^2 = v^3 = 1 \implies V = 3$$

* 2 identical players: $X_A = X_R = 1$

$$X_A = X_B = 1$$

* A mixed strategy: each field uniform dist. on [0, 2/3]:

$$P_{A} = P_{B} = 3/2$$

* With player A pure strategy of 1/3: $P_{R} = 2$ and $P_{A} = 1$

$$P_B = 2$$
 and $P_A = 1$

*

Mixing improves player A payoff:

from
$$P_A = 1$$
 to $P_A = 3/2$

- * 1. If Adversary is strategic, randomization is essential!
- * 2. If no simplification (budget constraint holds exactly), equilibrium will be similar, but subtle to construct.

Western Air Defense Sector Canadian Air Defense Sector Eastern Air Defense Sector Recommendations: how to allocate recourses

- * How to allocate resources [fixed manpower]
- Inefficiency of fixed resource allocation
 - * At each sector for each date
- * Payoff can be improved with no resources added!
- * HOW? By employing mixing: each sector will still employ the same resources, but ON AVERAGE (in our example, uniform dist. on [0, 2/3] instead of 1/3 on each date)
- *

 Mixing improves Defender's payoff if attackers are strategic
- * I. If Adversary is strategic, randomization is essential!
- * II. If budget constraint is exact: similar, but subtle
- * III. Our paper constructs equilibrium with any sector values

Features of Colonel Blotto-type games

- * A general resource allocation game
- * A simultaneous move game
- * A constant-sum game (extends to a non-constant sum)
- Not a finite game
- Contest functions and payoffs could be discontinuous
- * Other resource allocation games:
 - * FLIPIT game: continuous time game, contest function as in Blotto
 - * Contest of teams game: with fixed number of players, M and N, and a lottery-like contest function [Gladiator game]

FlipIT

- * M. van Dijk, A. Juels, A. Oprea, and R. Rivest. Flipit: The game of stealthy takeover, Journal of Cryptology, 26(4):655--713, 2013.
- * One field (resource) only
- * The game of timing
- Each player chooses when to flip
- * Time is continuous, finite length T
- Costs of flip for each player are common knowledge
- * Playoff: the fraction of time the player "owns" the resource

Contests between two teams

- * K. S. Kaminsky, E. M. Luks, and P. I. Nelson. Strategy, nontransitive dominance and the exponential distribution, Australian Journal of Statistics, 26(2):111--118, 1984.
- * Y. Rinott, M. Scarsini, and Y. Yu, A colonel Blotto gladiator game, Math. Oper. Res. [MOR], 37(4):574--590, November 2012.
- * The rules of the game:
- * Each team has fixed number of players
- A manager of each team
 - * has fixed resources to distribute between players
 - decides how to allocate resources to players
 - * If player resources are a and b, the probability of winning is a/(a+b)
 - * The last winning player wins the entire game
- Only one battlefield

Environments with Blotto-type settings

- * Useful in environments where:
 - Strategic attacks are present
 - Players move simultaneously
 - Fixed resources must be allocated
- * Why renewed interest in Blotto?
 - Recent analytical and computational advances allow to solve complex resource allocation problems
 - * Global connectivity allows rapid aggregation of information from heterogeneous public and private sources.

Applications

- * Information technology (IT) security: resource (human, processor) allocation across tasks.
- * Emergency relief allocation of state / federal resources: equipment, water, food, medical supplies, air fleet allocation
- * Air and sea (underwater) fleet: [patrolling and warfare]
- * Anti-terror defenses [under a strict resource constraint]: Blotto allows to consider simultaneous games
- * Air space patrolling / monitoring

Blotto game: a first step: Gross & Wagner (1950)

- * For 2 battlefields (n=2): complete solution of heterogeneous game X_B, X_A and v_1, v_2
- * if X_B 3 $2X_A$ pure strategy equilibrium
- * If $X_B < 2X_A$ mixed strategy equilibrium (mixing has a final number of mass points in its support)

* For 3 battlefields (n=3): a solution for players with identical

81

resources $X_B = X_A$

Illustration: courtesy of Gross & Wagner '50

Marginals

Gross & Wagner (1950) solution for n=3

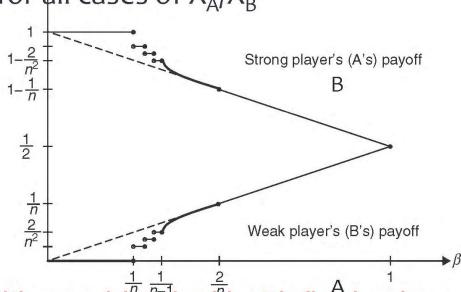
$$x_A^i \sim Uniform_{\hat{\Theta}}^{\hat{\Theta}}0, \frac{2v^i}{V}X_A^{\hat{U}}, \text{ same for } x_B^i$$

- * Easy (relatively): to show that a distribution with these marginal is an equilibrium
- * Difficult: to find a joint distribution with these marginals respecting budget constraints
- Extensions of Gross & Wagner (1950)
 - Laslier & Picard (2002)
 - * Thomas (2013)

Step 2: asymmetric player resources; identical battlefields [Roberson (2006)]

* Roberson (2006) a solution for all cases of X_A/X_B

Picture from Roberson 2011



* No solution for the game with non-identical battlefield values

Equilibrium characterization [by Roberson (2006)]

- * n homogeneous battlefields: $n^3 3$ $v^i = v$ and V = nv = 1
- * Case 1: X_B 3 nX_A [Extreme resources disparity] $P_A = 0$; $P_B = V$
- * Case 2: [Intermediate resource disparity] $P_A > 0$; $P_B < V$
- * Case 3: $\frac{2}{n} < \frac{X_A}{X_B}$ [Similar resource endowments]

$$P_A = \frac{X_A}{2X_B}V; \quad P_B = \mathring{c}_1 - \frac{X_A \ddot{0}}{2X_B \ddot{0}}V$$

* Case 1 – pure equilibrium, Cases 2 & 3 – mixed equilibrium

Roberson (2006) Case 1: extreme disparity of player resources

- * case 1: $P_A = 0; P_B = V$
- * If X_B 3 nX_A pure strategy equilibrium exists
- Multiple payoff equivalent equilibria (possibly mixed)
- * For example: a stronger player puts X_B / n on each field
- * Weaker player has a zero payoff; he is indifferent between playing the game and staying out of the game.

Roberson (2006) Case 2: Resources in intermediate range

- * n homogeneous battlefields: $n^3 3$ $v^i = v$ and V = nv = 1
- * Case 2: Resources are in the range between Cases 1 and 3

$$\frac{1}{n} < \frac{X_A}{X_B} \in \frac{2}{n}$$

* "Guerilla warfare equilibrium": A weaker player allocates no resources some (one or more) fields

Roberson (2006) Case 3: Players with similar resources

* n homogeneous battlefields: $n^3 3$ $v^i = v$ and V = nv = 1

$$v^i = v$$
 and $V = nv = 1$

* Case 3:
$$\frac{2}{n} < \frac{X_A}{X_B} \pm 1$$

* Unique payoffs

Unique mixed strategies

In equilibrium,

$$P_A = \frac{X_A}{2X_B}V; \quad P_B = \overset{\text{at}}{\underset{e}{\downarrow}} 1 - \frac{X_A}{2X_B} \overset{\text{o}}{\underset{e}{\downarrow}} V$$

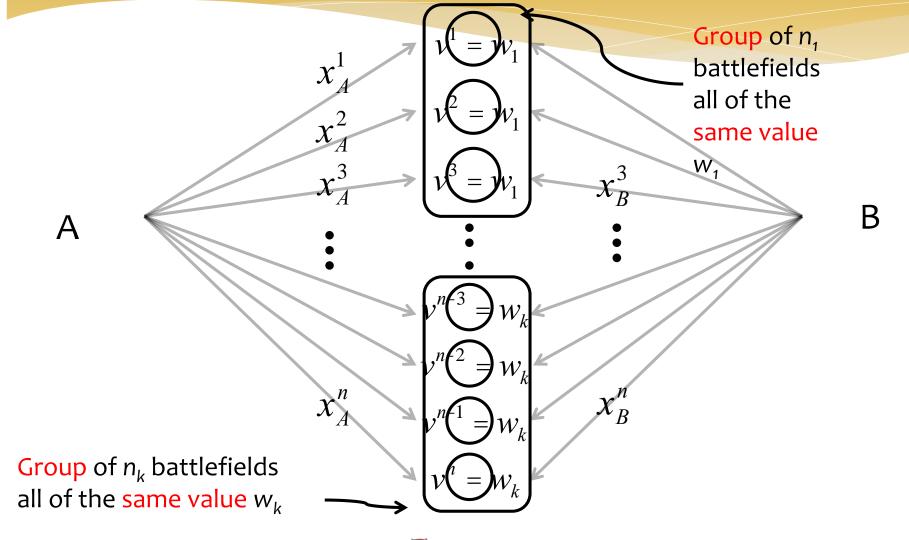
$$F_A^J(x) = \left(1 - \frac{X_A}{X_B}\right) + \frac{x}{\frac{2v^J}{V}X_B} \left(\frac{X_A}{X_B}\right), \quad x \in [0, \frac{2v^J}{V}X_B];$$
(2a)

(ii) For player B:

$$F_B^I(x) = \frac{x}{\frac{2v^J}{V}X_B}, x \in [0, \frac{2v^J}{V}X_B].$$
 (2b)

- $F_B^t(x) = \frac{x}{\frac{2\pi^d}{V}X_B}, \ x \in [0, \frac{2\nu^d}{V}X_B]. \tag{2b}$ Strictly positive amount of resources on all battletields
- Proof: by constructing a joint distribution with these marginals; uniqueness follows from all-pay auctions results

Our paper solves Blotto game with heterogeneous battlefields



Our contribution: a solution of heterogeneous Blotto game

- * Assume that for each group $j = \frac{2}{n_j} < \frac{X_A}{X_B} + 1$ then:
 - * Equilibrium marginals: Similar to Robinson (2006)

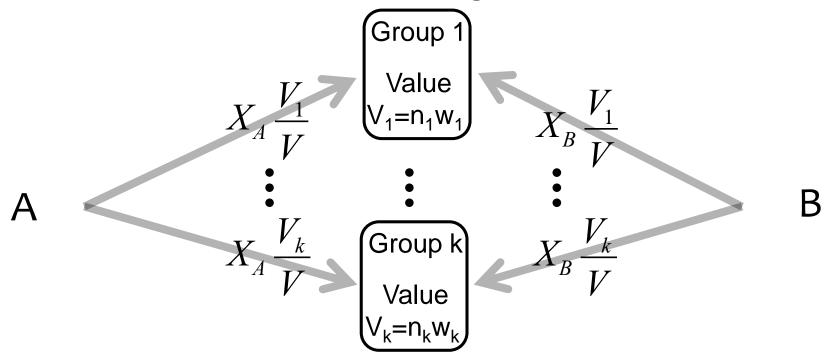
* Unique equilibrium payoffs

A:
$$\frac{X_A}{2X_B}V$$
; B: $cap{0}{c}1 - \frac{X_A}{2X_B} cap{0}{0}V$

* There exists a valid joint distribution respecting budget constraints (proven by its construction)

Construction of joint distribution

* Step 1: allocate resources to each group of battlefields proportional to total value of the group



* Step 2: within each group, allocate as Roberson (2006)

Remarks

- * Remark: we require $\frac{2}{-1} < \frac{X_A}{2} \le 1$
- * We construct an equilibrium joint distribution
 - It gives correct marginals
 - It respects the budget constraint
- * Require n_i^3 3 for all j
- * All groups (need to be in regime 3)
- * Joint distribution is not unique

Recent Blotto Applications in Engineering

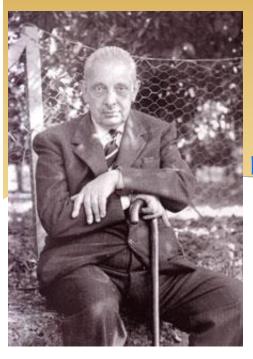
- Infrastructure protection (robustness of cyber-physical systems)
 - hybrid defensive allocation w/ partially strategic attackers
 [Shan & Zhuang (2013)]
 - interactions of teams / coalitions facing a common adversary [my presentation: FORCES June, 2014]
- * Network defenses: effects network structure on security
 - Blotto on network w/ various topologies [Goyal & Vigler (2010)]
 - * Blotto on network with propagation [Bachrach et.~al., (2012)]
- * Fending terrorist attacks
 - * Assisting resource allocation [Powell (2007, 2009)]
 - Blotto combined w/ Milind Tambe framework [Paruchuri et.~al., (2009), Jain et.~al.,(2010)]

Conclusion

* Summary:

- * Blotto-type games are beautiful and useful!
- * We solve the game with asymmetric player endowments and heterogeneous battlefields, under minor restrictions
- * We provide an algorithm for allocating resources across battlefields
- * An open problem:
 - An equilibrium for players with moderately asymmetric resources (guerilla warfare region)
- * Future work
 - * Players with unequal valuations of the battlefields
 - * The limit of large number of battlefields

If we want things to stay as they are, things will have to change.



Il Gattopardo, [The leopard] 1958 Giuseppe Tomasi di Lampedusa

http://www.imdb.com/title/tt0057091/quotes

THANK YOU