
Running SpaceEx on the ARCH14 Benchmarks

Stefano Minopoli and Goran Frehse

Université Joseph Fourier - Grenoble 1 / Verimag,
{stefano.minopoli,goran.frehse}@imag.fr

Abstract. In this paper, we present experimental results from run-
ning the verification tool SpaceEx on some of the benchmarks of the
ARCH14 workshop. Some of the SpaceEx models were obtained from
Matlab/Simulink models with the help of a new translation tool. While
some benchmarks could be handled to our satisfaction, several still pose
significant challenges. We discuss possible alternatives for handling the
problematic cases.

1 Introduction

This paper presents some results from running the verification tool SpaceEx [5]
on some benchmarks of the 2014 Workshop on Applied Verification of Contin-
uous and Hybrid Systems (ARCH14) [6]. For hybrid systems already modeled
by Simulink, we used the experimental tool Simulink to SpaceEx (SL2SX) to
help the process of building the SpaceEx model (publication under submission).
The following benchmarks were selected from the ARCH14 pool of benchmarks
because they have piecewise affine dynamics, are closed (the model includes the
controller), and constitute reachability problems. The models and configuration
files for running the examples in SpaceEx are available as attachment.

2 DC-to-DC Switched-Mode Power Converters

This example originates from the DC-to-DC switched-mode power converters
described in [11], with continuous dynamics specified by linear ordinary differ-
ential equations. A DC-to-DC converter transforms a DC source voltage from
one voltage level to another by switching at a high (typically kilohertz) frequency
between low and high voltage levels. The continuous variables are the currents
and voltages in the circuit.

The Simulink model for this system is depicted in Figure 1(a), while Figure
1(b) shows the Stateflow block of the system. We use the new tool SL2SX to
translate the Simulink model from [11] into a SpaceEx model. The tool translates
each Simulink block into a SpaceEx component, preserving the structure and
layout of the model. Not all Simulink blocks are supported (some are not readily
modeled as hybrid automata), and need to be completed by the user. In this
example, the user must delete the network component corresponding to the scope
block and must attribute numerical values to the constants in blocks. Figure 2(a)



2 Stefano Minopoli and Goran Frehse

(a) main system (b) Stateflow block

Fig. 1. Simulink diagram for DC-to-DC switched-mode power converters

shows the resulting translation of the Simulink main system from Fig. 1(a). The
current version of the translator does not support the random number block
and the Stateflow block. The hybrid automaton shown in Figure 2(b) is our
abstraction for the random number block. It consists of a single location whose
invariant guarantees that the values of variable Out1 (used to model the block
output) are non-deterministically chosen inside an interval, according to block
parameters. Figure 2(c) shows a hybrid automaton for modeling the Stateflow
block. It consists of the same locations (i.e. Charging and Discharging), flows
and transitions. Invariants have been added to mimick the Simulink/Stateflow
must-semantics.1

Figure 3(a) shows the result of a Simulink simulation of the voltage level
for a time horizon of 0.004 sec. We use SpaceEx to compute the reachable set
for the voltage for the same initial conditions. The initial state is set accord-
ing to Stateflow initial conditions (location Discharging, current equal to 6 and
voltage equal to 17.5). The reachable set is computed by the STC algorithm,
parametrized with 0.01 as flowpipe tolerance, 4×10−6 sec as local time horizon,
and using 64 octagonal template directions. Figure 3(b) shows the reachable set,
which is computed 926.0 sec on a standard laptop. The comparison between this
set and the Simulink simulation in Fig. 3(a) shows the error accumulation during
the reachability analysis. This benchmark is challenging for the STC algorithm
since it switches frequently, every 25µsec, compared to the overall dynamics,
which is on the order of milliseconds. The approximation error incurred dur-
ing the jump can quickly accumulate and render the analysis useless. Indeed,
choosing an interval for the switching times makes the reachability analysis with
SpaceEx/STC diverge. We suspect that a discrete-time approach may be more
suitable, since the continuous evolution between switching times is relatively
minor.

1 In Simulink/Stateflow, transitions must fire as soon as the state enters the guard
set, while in hybrid automata with may-semantics the system may remain in the
location as long as the invariant is satisfied. For details, see [10].



Running SpaceEx on the ARCH14 Benchmarks 3

(a) main system

(b) abstraction of the random number block

(c) HA model of the stateflow block.

Fig. 2. SX model from SL2SX after completion by user

3 Motor-Transmission Drive System

This example is a model of the Motor-Transmission Drive System in [1]. Instead
of considering the traditional powertrain, where a clutch disengages the power
input of the engine during the shifting process, the rotor of the electric motor is
directly connected to the input shaft of the transmission. For shifting gears, a
sleeve is pushed by a shift actuator to first disengage from one gear and then to
mesh with another gear. If the sleeve arrives at the target gear at an improper
angular position, then it can delay the meshing process, or worse still, lead to
physical impacts. The impacts make this a hybrid system: the sleeve moves
continuously until it hits the gear, at which point its velocity changes (almost)
instantaneously and then evolves continuously again. The state of the system
consists of the horizontal position and velocity, px and vx, and vertical position
and velocity, py and vy. We exploit the symmetry of the original problem to
decrease the complexity of the reachability analysis. Note that a gear tooth
extends from py = −b to py = b and is symmetric around py = 0. Due to
symmetry, we can model only the upper half of a gear tooth, i.e., 0 ≤ py ≤ b,
and virtually extend the state space using mirroring: when the state hits the
bounds py = 0 or py = b, the velocity is updated to vy := −vy. The resulting
trajectories are equivalent to the original trajectories modulo changes in the sign
of py and multiples of 2b.

The system can be viewed as a 2D-version of a bouncing ball. The dynamics
are two double integrators, which translate the acceleration of the sleeve into its



4 Stefano Minopoli and Goran Frehse

(a) Simulink simulation

(b) reachable set

Fig. 3. Simulation and reachable set for the voltage over a time horizon of 0.004 s.

(a) horizontal vs vertical position (b) position vs velocity

Fig. 4. Trajectories grazing the switching surface amplify the approximation error

horizontal and angular position. The collision of the sleeve hitting the gears leads
to a change in velocity. Because of the stiffness of the gears, this collision is not
a simple geometric reflection, i.e., the incoming and outgoing angles may not be
the same. The collision equations are such that a minor uncertainty in time and
position is amplified by the collision. This is shown in Fig. 4 for a single initial
state. The reachable set is computed in SpaceEx with relatively high precision:
using the STC scenario, we chose 512 uniformly distributed template directions
and a flowpipe error of less than 0.0001. The approximation error remains quite
small for the first 6 collisions, but on the 7th and 8th collision it explodes. Further
iterations will lead to excessive overapproximation. Note that the result is not
much worse (but a lot faster) when using just octagonal directions. Combining
the STC algorithm with synthesizing template directions for precise intersection
as in [7] might improve the results.



Running SpaceEx on the ARCH14 Benchmarks 5

(a) horizontal vs vertical position (b) position vs velocity

(c) vertical position vs velocity (d) horizontal vs vertical velocity

Fig. 5. Trajectories obtained from sampling the initial states with 200 random points

Another problem of this system is the state explosion. The gear geometry is
such that a state set can intersect with four guards simultaneously: the upper
boundary of the gear, the lower boundary of the gear (in our case, the mirroring
surface), the right hand boundary of the gear, and the upper boundary of the
model space, which corresponds to the gear hopping to the next tooth. The
right hand boundary is a cul-de-sac, since the gear is considered meshed. Each
newly found state may therefore trigger four successor states, three of which may
themselves spawn new successors. This leads us to believe that the problem is not
very suitable to forward reachability. Other techniques, like directly synthesizing
an invariant [12], might be more successful.

As an alternative to formal reachability, sampling the state space with simu-
lation runs is possible. Indeed, the system is deterministic apart from the initial
condition, so that every initial state leads to a single trajectory. It turns out
that all these trajectories are acyclic and eventually end up in the meshed state,
so we consider this system very suitable to trajectory-based techniques such as
[4, 8, 2, 3]. Figure 5 show the results of running the SpaceEx simulation scenario.
It uses the same mechanism as the reachability computations, but replaces the
set-based successor computations by simulation trajectories obtained with an
ODE solver (CVODE). The initial set of states is sampled randomly for a given
number of points. The initial states were the horizontal position px = −0.02, hor-



6 Stefano Minopoli and Goran Frehse

(a) e1 ≥ −25.629m. (b) e2 ≥ −8.582m. (c) e3 ≥ −3.410m.

Fig. 6. Bounds on e1, e2 and e3 without communication failure, obtained from the
reachable set over time

izontal velocity vx = 0, the full range of possible vertical positions py ∈ [0, 0.01],
and the full range of vertical velocities vy ∈ [−0.08, 0.08] given in the benchmark
description. A monitor automaton was used to measure the accumulated impact
I, the number of hops (jumps from one tooth to another), and the number of
collisions with the gear walls. The simulation was run until a fixed-point was
reached, i.e., until all states enter the meshed state. Sampling the initial states
with 200 random points, we obtained a bound of I ≤ 48.7 in the impact, a
maximum of 1 hops to other gear teeth, and up to 10 impacts. The complexity
of the obtained sets confirms our suspicion that the system is indeed challenging
for forward reachability.

4 Networked Cooperative Platoon of Vehicles

This benchmark consists of a platoon of three controlled vehicles with a man-
ually driven leader [9]. The vehicles exchange information via a communication
network that may be subjected to total loss of communication. The leader can
change the speed with an acceleration in the range aL ∈ [−9, 1] m/s2. Com-
munication may be subjected to a failure every c1 seconds and is restored after
c2 seconds. Each vehicle i is modeled by the triple (ei, vi, ai), where ei repre-
sents the difference between the distance di of vehicle i to its predecessor and a
reference distance dref ,i. Variables vi and ai represent, respectively, the relative
velocity and acceleration of vehicle i with respect to the predecessor.

The goal is to determine the minimum allowable safe gaps among the vehicles.
We use reachability analysis to establish, for each i, the minimum value reachable
for ei. We consider the ideal case without communication failure and the case
with possible failure and parameters c1 = c2 = 20 s. The ideal case is modeled
by a hybrid automaton with a single location (a purely continuos system), while
for the case with breakdown an additional location models the period without
communication. The flow is a linear function as given in [9]. For the ideal case,
Figure 6 shows the projection of the reachability set over e1, e2 and e3 over
the time, computed in 5.9 sec with the STC algorithm, using 0.01 as flowpipe
tolerance, octagonal directions, and a local time horizon of 100 s. In this case



Running SpaceEx on the ARCH14 Benchmarks 7

(a) e1 ≥ −35.442m. (b) e2 ≥ −32.759m. (c) e3 ≥ −19.078m.

Fig. 7. Bounds on e1, e2 and e3, for a possible breakdown every 20 sec with 20 sec of
recovering time, obtained from the reachable set over time

Table 1. Minimum safe distances for communication failures at different times t.

Failure time e1 e2 e3
t = 1s ∼ 40m ∼ 55m ∼ 42m
t = 3s ∼ 40m ∼ 40m ∼ 29m
t = 4s ∼ 38m ∼ 32m ∼ 20m
t = 5s 35.4m 32.7m 19.0m
t = 21s 35.4m 32.7m 19.0m
t = 22s 25.6m 8.5m 3.4m

we can establish min(e1) = −25.629m, min(e2) = −8.582m, and min(e3) =
−3.410m. The reachable set for the case with possible breakdown is depicted in
Figure 7, computed in 188.9 s with the STC algorithm, with flowpipe tolerance
0.1, box directions, and a local time horizon of 21 s. The minimum values for e1,
e2, and e3 are, respectively, −35.442m, −32.759m, and −19.078m.

We also investigated other failure patterns for communication. In the must
failure case when the system is subjected to a communication failure exactly
every t seconds. In the may failure case, the system can lose communication
after t seconds or later. In the following experiments, we found the same safety
results for both may and must cases. A may or must failure that happens every
t ≥ 22 s has not impact on the safe distances. Hence, they are equivalent to the
ideal case (see Figure 6) when a communication failure can never happen. The
analysis with t ∈ [5, 21] s gives the same minimum safe distances as the case
with t = 20 s from Figure 7. For cases with t ≤ 4 s, the minimum safe distances
increase as t is reduced. Table 1 shows a summary of the performed experiments
(recall that may and must cases are characterized by the same results).



Bibliography

[1] Hongxu Chen, Sayan Mitra, and Guangyu Tian. Motor-transmission drive
system. In Frehse and Althoff [6].

[2] Thao Dang and Tarik Nahhal. Coverage-guided test generation for continu-
ous and hybrid systems. Formal Methods in System Design, 34(2):183–213,
2009.

[3] Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis
of hybrid systems. In Computer Aided Verification, pages 167–170. Springer,
2010.

[4] Georgios E Fainekos, Antoine Girard, and George J Pappas. Temporal logic
verification using simulation. In Formal Modeling and Analysis of Timed
Systems, pages 171–186. Springer, 2006.

[5] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-
pado, A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification of
hybrid systems. In CAV’11, pages 379–395, 2011.

[6] Goran Frehse and Matthias Althoff, editors. 1st Workshop on Applied Ver-
ification for Continuous and Hybrid Systems (ARCH). http://cps-vo.

org/group/ARCH/benchmarks, 2014.
[7] Goran Frehse and Rajarshi Ray. Flowpipe-guard intersection for reachabil-

ity computations with support functions. In Analysis and Design of Hybrid
Systems (ADHS), pages 94–101, 2012.

[8] A Agung Julius, Georgios E Fainekos, Madhukar Anand, Insup Lee, and
George J Pappas. Robust test generation and coverage for hybrid systems.
In Hybrid Systems: Computation and Control, pages 329–342. Springer,
2007.

[9] Ibtissem Ben Makhlouf and Stefan Kowalewski. Networked cooperative
platoon of vehicles for testing methods and verification tools. In Frehse and
Althoff [6].

[10] Stefano Minopoli and Goran Frehse. Non-convex invariants and urgency
conditions on linear hybrid automata. In Formal Modeling and Analysis of
Timed Systems, pages 176–190, 2014.

[11] Luan Viet Nguyen and Taylor T. Johnson. Dc-to-dc switched-mode power
converters. In Frehse and Althoff [6].

[12] SV Rakovic, P Grieder, M Kvasnica, DQ Mayne, and M Morari. Compu-
tation of invariant sets for piecewise affine discrete time systems subject to
bounded disturbances. In Decision and Control, 2004. CDC. 43rd IEEE
Conference on, volume 2, pages 1418–1423. IEEE, 2004.


