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Abstract

We present a benchmark example of an automotive powertrain control system
converted to a hybrid system with piecewise-affine (PWA) continuous dynamics.
The purpose is to provide an example of an industrial nonlinear system that is
amenable to existing software tools for performing verification of safety properties
for hybrid systems. Existing algorithmic approaches to hybrid system verifica-
tion require that system representations are restricted to specific class of models.
Therefore, it is important to develop and evaluate techniques to generate approx-
imate models that adhere to the required class of systems without introducing an
unacceptable amount of approximation errors. The example we present is intended
to demonstrate a symbolic method to automatically approximate a nonlinear model
with a PWA approximation while respecting a given bound on the approximation
error. While existing tools are applicable to the resulting model, the scale of the
PWA model is intended to challenge the capabilities of these tools. We conduct an
experimental comparison between the original and PWA models and present our
observations and discuss challenges for the research community.

Category: Industrial Difficulty: High

1 Introduction
A large body of extant literature in control theory and hybrid systems theory relies on
a linear/affine or piecewise-affine (PWA) representation of the underlying systems for
design or analysis. In industrial-scale systems, such as those found in the automotive
domain, such an assumption is usually unrealistic, as high-fidelity models for physical
processes are often nonlinear. In order to apply the rich set of analysis and design
techniques for affine and PWA systems, we then have to make further approximations,
and translate the nonlinear dynamical-systems models to linear or PWA models.

There are numerous tools and techniques for generating PWA approximations of
nonlinear models [2, 13]. A typical challenge faced by many of these techniques is a
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tradeoff between complexity (i.e., the number of affine regions in the resulting model)
and accuracy (i.e., the maximum error between the original nonlinear model and the
PWA model in any given region). While accuracy is a serious consideration if the PWA
model is to be used for any meaningful analysis or design, a representation with too
many regions will usually render any analysis technique too slow to be practical.

PWA models are of special interest when applying formal verification approaches
such as reachability analysis. Given a set of initial states, and a time horizon T , reach-
ability analysis computes a conservative approximation of the set of states reachable
from time 0 to time T . Several software tools have been developed to verify safety
properties for hybrid systems. Tools such as Kronos [14] and UPPAAL [9] apply to
timed systems, i.e., systems whose continuous dynamics are given by clocks. The
HyTech tool extends to systems with continuous dynamics given by constant deriva-
tives [6].

In this paper, we evaluate two methods: a simplex-partitioning method that im-
poses a simplicial decomposition on the global state space, and and a nested method
that performs local PWA approximations for nonlinear subexpressions appearing in the
dynamical equations for the system under consideration. Both methods are provided
by a proprietary package from Maplesoft [5]. Our experiments target the SpaceEx tool,
which is a tool for verifying safety properties of linear hybrid systems [4]. SpaceEx
allows the designer to specify a hybrid system and a property to be verified, in the
form of a temporal logic formula. SpaceEx handles hybrid systems with affine con-
tinuous dynamics and polytopic guards and invariant sets. SpaceEx is based on the
PHAver technology, which uses infinite precision representations of polytopic sets to
perform the reachable set estimation [3]. SpaceEx incorporates several recent advances
in reachable set estimation, such as zonotope [1] representations and support functions
[10], which can increase the efficiency and accuracy of the reachable set estimations.

2 A/F Ratio Control Model
In this section, we present a brief review of the air-fuel control model; in the sequel,
we present two models obtained by piecewise-affine approximations. The model we
present is a closed-loop model, i.e., it contains a model of the plant and a model of the
controller. This model is unchanged from the one that appeared before in [7] and [8].

Plant Model. The plant model contains a representation of the throttle, the intake
manifold, the cylinder subsystem and the exhaust subsystem. Several physical phe-
nomena such as fuel injection dynamics (e.g. fuel puddling after injection), exhaust
system dynamics (e.g. exhaust gas transport dynamics), and sensor dynamics (e.g. the
O2 sensor dynamics) are assumed to be either removed or replaced with first-order ap-
proximations. Furthermore, we replace look-up tables in the plant that model nonlinear
relationships between system parameters and the operating conditions with polynomial
approximations. The result is a nonlinear, continuous-time model with two exogenous
inputs: the throttle angle in degrees (denoted θ) and the engine speed in rad/sec (de-
noted ω), and two continuous states: the intake manifold pressure in bars (denoted p)
and the measured air-fuel ratio (denoted λ). The actual equations are presented in the
appendix.
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Controller. The controller contains two parts, the first is an open-loop feedforward
component that estimates the intake manifold pressure p by observing the mass of the
air (ṁaf ) flowing into the manifold. This is then used to compute the mass of the air
flowing into the cylinder that is used during the combustion process. In a real system,
such an estimator is designed to compensate for phenomena such as parameter varia-
tion and sensor noise; by using for example an extended Kalman filter. For simplicity,
we choose a naive observer that assumes nearly perfect knowledge of the nonlinear
function modeling the relationship between ṁaf and p. The second component is the
Proportional + Integral (PI) controller that regulates the air-fuel ratio. Thus, the con-
troller is assumed to have two states: the estimated intake manifold pressure (denoted
pest ), and the state of the integrator in the PI controller (denoted i).

In the actual system, the control software is modeled as a discrete-time system that
operates a single task at a fixed frequency. In order to facilitate PWA approximation,
we further simplify the closed-loop model by considering a continuous-time controller,
while retaining the nonlinearities in the plant. Finally, we fix the inputs to the closed-
loop model to constant values: 15◦ for the θ input, and 200 rad/sec for the ω input. The
resulting closed-loop model is thus an autonomous model with four continuous states
(p, λ, pest , i) evolving according to differential equations with continuous, nonlinear
dynamics.

3 Piecewise Affine Approximations
In this section, we present PWA approximations of the system dynamics described in
Sec. 2. We first state the problem definition: Consider a nonlinear system of the form:
ẋ = f(x), x ∈ Rn. The objective is to find a good PWA approximation, which can be
defined as the set of PWA dynamical systems as follows: ẋ = Aix+ci, x ∈ Ri. Here,
Ai ∈ Rn×n, ci ∈ Rn, and Ri ⊆ Rn. Furthermore, the sets Ri are disjoint, i.e., for
any i, j, Ri∩Rj = ∅1. A good PWA approximation is one in which the approximation
error is acceptable. Formally, the approximation error ei for region Ri is defined as:
ei = max

x∈Ri

‖f(x) − (Aix + ci)‖. Here ‖.‖ denotes a norm in a suitable topological

space, such as the L2 norm over Rn. Another metric of the utility of a given PWA
approximation is the number of regions Ri. A high number is typically indicative
of a more precise approximation; however, a high number is not always desirable,
especially when performing reachability analysis with tools such as SpaceEx.

In what follows, we give a brief description of two methods that we used to bench-
mark the PWA approximation models generated using the PWATools package devel-
oped by Maplesoft for Toyota [5].

PWA approximations with the Simplex-Partitioning method. The objective of the
simplex-partitioning approach is to compute a PWA approximation that is continuous
and has a manageable number of regions (even for higher dimensional spaces). Here,
we consider PWA approximations with polytopic regions that are simplices. A simplex

1Note that in a hybrid automaton model of the PWA, a location (mode) is assigned to each Ri, whose
invariant set is the closure of Ri and whose outgoing guard sets are defined on the boundary of the closure
of Ri.
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Figure 1: Regular edge bisection method for simplicial decomposition. Green lines
denote the domain of interest, and the brown lines show the simplicial decomposition.

is a polytope with n + 1 vertices for a system with n dimensions. In a simplectic
decomposition, an affine approximation over a given simplex Ri can be computed by
equating the value of the affine expression to the value of the given nonlinear function
at the (n+1) vertices of the simplex. If all the local PWA approximations are computed
in this fashion, the vector field across the partition boundaries is continuous, which is
advantageous with regards to the reachable set estimation computations. Maplesoft’s
tools provide a number of simplex-partitioning algorithms; we chose the scheme known
as regular edge bisection.

The goal of the regular edge bisection method is to produce a limited family of
simplices that are not degenerate (e.g. having unit normal vectors whose inner product
is close to 1) using the simplex bisection scheme by Maubach [12]. Fig. 1 depicts the
result of applying the regular edge bisection procedure on a two-dimensional example.

PWA approximations with the Nested method. The nested method computes the
approximation to nonlinear vector functions by hierarchically approximating the func-
tions according to the structure of their subexpressions, which can produce a smaller
relative number of partition elements than other techniques. This technique can be use-
ful for higher dimensional spaces (e.g., n ≥ 6), where the number of partition elements
required to achieve a desired error bound is often prohibitively high.

Essentially, this approach computes a PWA approximation of the nonlinear vec-
tor field function using nested univariate PWA functions. The method utilizes three
key ideas: (1) PWA approximation of the sum of nonlinear functions is defined as the
sum of PWA approximations of individual functions, (2) the PWA approximation of
the composition of nonlinear functions is defined as the composition of PWA approx-
imations of individual functions, and (3) multivariate nonlinear terms can sometimes
be decomposed into a sum of univariate expressions by applying transformations and
introducing new intermediate variables. This allows dividing the overall problem into
several smaller problems over the domains of the embedded univariate nonlinear ex-
pressions.

A natural way to think about the nested PWA model obtained by the nested method
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is to think of it as a composition of several components. If we represent each univariate
subexpression as an intermediate variable, then the PWA approximation of this expres-
sion is a component whose input is the variable appearing in the expression, and the
output is the intermediate variable. Global behavior can then be understood in terms of
parallel composition of these components.

The simplex-partitioning approach neglects the structure of the function, seeking
to construct an acceptable PWA approximation by strategically splitting the domain to
minimize the number of regions required to achieve a desired accuracy. In contrast, the
nested method does not limit the number of global regions, but exploits the structure of
the function itself. In general, there is little control over the number of global polytopic
partitions of the domain that may be formed by the nested method. As we decrease the
tolerated error, the number of regions generated increases exponentially.

In spite of the high number of regions that the nested method may generate, reacha-
bility analysis tools could still scale to nested PWA models, as long as the projection of
the reachable sets on individual univariate subexpressions do not span multiple regions.
The representation of the nested PWA model is also succinct as the as it avoids com-
puting the partition imposed on the global state-space by the Cartesian product of the
local PWA regions. Note that a tool such as SpaceEx that supports component-based
modeling may be able to run on such a succinct representation directly. Translation to
models in the SpaceEx format remains an important part of the future work. Another
promising direction is to try on-the-fly generation of linear regions, i.e. a linear region
is only generated when it is reached [11].

4 Experimental Evaluation and Conclusion
In this section, we evaluate the two PWA approximation methods. In the first exper-
iment, we compare the results of simulating the three models: the original nonlinear
model Mnonlinear, the PWA model obtained by simplex-partitioning method M PWA

simplex,
and the PWA model obtained by the nested method M PWA

nested. All simulations reported
in the sequel were performed using MapleSim. For the approximation from Mnonlinear
to M PWA

simplex, there is one approximation parameter that the user controls: the maximum
number of allowed PWA regions. For this experiment, we picked the number to be
500, and after the approximation was finished, the number of simplices generated was
reported as 453. For the approximation from Mnonlinear to M PWA

nested, there are two ap-
proximation parameters that the user controls: the allowed error tolerance (per region
associated with a subexpression), and the maximum number of PWA regions per non-
linear expression. For this experiment, we chose an error tolerance of 0.01, and the
maximum number of regions to be 64. Upon termination of the approximation proce-
dure, the number of regions in the composed and flattened PWA model was 27, 824.

To compare the two models, we randomly choose 10 initial conditions each state
variable from the following intervals: p: [0.8, 1.0], λ: [14.0, 15.4], pest : [0.9, 1.2], i:
[−0.5, 0.5]. We then simulate the 3 models for a duration of 5.0 seconds, and measure
the RMS error between the trajectories of models M PWA

simplex and M PWA
nested with the corre-

sponding trajectories of the model Mnonlinear. We then compute the avg. RMS error
across the 10 randomly chosen simulations, and report the results in Table 1. We show

5



State RMS error
M PWA

simplex M PWA
nested

p 0.22 0.04
λ 1.493 0.17
pest 0.75 0.35
i 1.56 0.17

Table 1: Comparison of the simplex-
partioning method and the nested
methods

Error PWA regions/expression
Tolerance Min Max Average

0.1 1 2 1.1
0.01 2 5 2.5
0.001 4 15 7.1
0.0001 12 46 21.1

Table 2: Distribution of the num. of
approximations across expressions for
the nested PWA method

N Approximation Avg. Sim. RMS error
Time Mem. Time for λ(t)

(secs) (GB) (secs)

M PWA
simplex

Nmax = 100 99 27 1.8 9.7 ∞
Nmax = 500 453 117 7.7 40.2 1.493
Nmax = 1000 990 260 16.8 128 0.97
Nmax = 2000 1968 535 33.4 423 0.96

M PWA
nested

δ = 0.1 2 1.2 0.017 2.09 0.18
δ = 0.01 2.8x104 2.1 0.074 2.42 0.17
δ = 0.001 1.5x1010 5.9 0.322 3.27 0.06
δ = 0.0001 1.8x1015 31 1.75 9.46 0.04

Table 3: Effect of increasing precision for the Simplex-Partitioning and the Nested
PWA approximation methods

sample plots comparing the 4 states in Fig. 2.
As can be seen from Table 1, the nested method is more accurate than the simplex-

partitioning method. The error in the states having transient behavior is worse for the
simplex-partitioning method. We remark that for the simplex-partitioning based ap-
proximation with a maximum of 500 simplices allowed, we are able to finish the simu-
lation starting from each of the 10 randomly chosen initial conditions. This is not true
in general, as we often obtain an approximation such that the resulting PWA dynamics
are unstable in some regions. This causes the state variables to grow exponentially in
such a region. As expected, the RMS error approaches∞.

Next, we study the effect of increasing the maximum number of allowed simplices
(Nmax) for the simplex-partitioning method, and decreasing the allowed error tolerance
(δ) for the nested method. For the nested method, as δ is decreased, the average number
of PWA regions required to approximate each nonlinear expression increases (shown
in Table 2). We report the average RMS error on the state λ (A/F ratio) for each of
the models in Table 3. For each model, we let N represent the final number of PWA
regions generated by the method if its hierarchical structure were flattened. We show
the effect of different levels of approximation on the trajectories of state λ in Fig. 3.
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(a) p(t) (b) λ(t)

(c) pest (t) (d) i(t)

Figure 2: State trajectories comparison. For M PWA
simplex, Nmax = 500, for M PWA

nested, δ =
0.01.

As expected, the RMS error decreases with increasing level of precision for both
methods. The cost-to-benefit ratio, however, sharply declines for the simplex-partitioning
method. As can be observed, the simulation time increases nearly 10x from 500 sim-
plices to 2, 000 simplices. The nested method scales much better with increasing de-
mands on precision. Furthermore, even the least precise run of the nested method pro-
duces a better average RMS error than the most precise run of the simplex-partitioning
based method. This is mainly due to the ability of the nested method to exploit formula
structure. Unlike the simplex-partitioning method, the nested method is not constrained
to have vector fields continuous across neighboring regions. Discontinuous approxima-
tions usually happen if the original model contains complex nonlinear subexpressions
such as piecewise functions or mathematical functions of more than one variable (e.g.
log(x+ y). The freedom to have discontinuous approximations could potentially con-
tribute to improving the accuracy.

Acknowledgements. We thank the anonymous reviewers for their feedback.
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(a) Nmax = 100, δ = 0.1 (b) Nmax = 500, δ = 0.01

(c) Nmax = 1000, δ = 0.001 (d) Nmax = 2000, δ = 0.0001

Figure 3: Effect of using different levels of approximation in both methods.
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Appendix

A: Nonlinear Model Equations
In this section, we outline the equations for the model described in Sec. 2.

The function encoding the geometry of the throttle is given as a function of the
throttle angle θ:

θ̂ = c6 + c7θ + c8θ
2 + c9θ

3. (1)

The inlet air mass flow rate ṁaf is then given by the product of the above function,
and a function encoding a physical phenomenon relating the atmospheric pressure (c10)
to the intake manifold pressure p:

ṁaf = 2θ̂

√
p

c10
−
(
p

c10

)2

. (2)

The pumping polynomial is a function of the engine speed ω (in rad/sec) and the
intake manifold p:

ṁc = c12
(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
)
. (3)

Finally, the ODE for the intake manifold pressure is described as follows:

dp

dt
= c1

2θ̂

√
p

c10
−
(
p

c10

)2

− c12
(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
) . (4)

The ODE governing the measured A/F ratio λ is given below.

dλ

dt
= c26(

ṁc

c25Fc
− λ). (5)

The state equation for the manifold pressure estimator is as given below.

dpest
dt

= c1 ·
(
c23 ˆ̇maf − ˆ̇mc

)
(6)

In the above equation, ˆ̇mc denotes the estimated air entering the cylinder, as com-
puted from the estimated intake manifold pressure. This quantity is given by the fol-
lowing equation:

ˆ̇mc = c27 ·
(
c2 + c3ωpest + c4ωp

2
est + c5ω

2pest
)
. (7)

The feedback PI controller update equation is given by

di

dt
= c14(c24λ− c11). (8)
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The fuel command (Fc) output by the controller is given by:

Fc =
1

c11
· (1 + c13(c24λ− c11) + i) · ˆ̇mc (9)

B: Model Parameters
List of model parameters (constants):

Table 4: Model Parameters.

Param Value Unit Description
c1 0.41328 RT/Vm
c2 −0.366 Coefficient for Pumping polynomial
c3 0.08979 Coefficient for Pumping polynomial
c4 −0.0337 Coefficient for Pumping polynomial
c5 0.0001 Coefficient for Pumping polynomial
c6 2.821 Coefficient for f(θ) polynomial
c7 −0.05231 Coefficient for f(θ) polynomial
c8 0.10299 Coefficient for f(θ) polynomial
c9 −0.00063 Coefficient for f(θ) polynomial
c10 1.0 bar Atmospheric pressure
c11 14.7/12.5 Desired air-fuel ratio (all other modes / power mode)
c12 0.9 Manifold pressure estimate error factor
c13 0.05 Proportional gain for PI controller
c14 0.03 Integral gain for PI controller
c23 1.0 MAF sensor constant error factor
c24 1.0 Oxygen sensor constant error factor
c25 1.0 Fuel injector actuator error factor
c26 4.0 First-order transfer function constant
c27 0.9 Observer error factor
u1 degrees Throttle angle
u2 rad/sec Engine speed

C: Details on the PWA approximation methods

Example application: the Lorenz attractor. The Lorenz attractor provides an illus-
trative example, demonstrating how the methods approach the approximation problem
at a system level and the structure of the approximated models. The Lorenz attractor is
given by:

ẋ1 =σ(x2 − x1)
ẋ2 =ρx1 − x2 − x1x3
ẋ3 =− βx3 + x1x2 (10)

where σ = 10, ρ = 28 and β = 8
3 . The domain considered is:

X = {(x1, x2, x3)| − 25 ≤ x1 ≤ 25,−25 ≤ x2 ≤ 25, 0 ≤ x3 ≤ 50} (11)

The Simplex-Partition method approximates the system (10) by grouping the right
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hand sides of the differential equations as the vector field f :

f =

 10(x2 − x1)
28x1 − x2 − x1x3
−2.67x3 + x1x2

 (12)

Only the nonlinear portion of (12) needs to be approximated, so f is partitioned
into its linear (flin) and non-linear (fnonlin) components as:

f = flin + fnonlin (13)

flin =

 10(x2 − x1)
28x1 − x2
−2.67x3

 (14)

fnonlin =

 0
−x1x3
x1x2

 (15)

The Simplex-Partition approach approximates fnonlin as f̃nonlin so that the ap-
proximation to the original vector field is then f̃ = flin + f̃nonlin. The nonlinear
portion fnonlin is a function of three variables and will be approximated as such, even
though the structure of the system only has products of two variables. Using 1,000 re-
gions for the vector field’s approximation, the resulting expression for f̃nonlin is far too
large for inclusion here. It consists of nested binary piecewise functions whose branch
values and switching conditions are affine expressions in the model’s state variables.

The Nested PWA approach first processes the model to extract the nonlinear terms
into separate equations. The multivariate nonlinear expressions are broken down into
sums of univariate nonlinear expression and then many lower dimensional approxima-
tions are computed, as opposed to the Simpex-Partition’s approach of computing one
high dimensional approximation. For the Lorenz system, the model is transformed into

z1 =− x1x3
z2 =x1x2

ẋ1 =10x2 − 10x1

ẋ2 =28x1 − x2 + z1

ẋ3 =− 2.67x3 + z2 (16)

There are four piecewise functions with affine switching conditions and two branches
each, giving 16 regions in the domain X .

The initial conditions of x1(0) = 10, x2(0) = 10 and x3(0) = 10 gives the
simulation results in Figure 4 for the original nonlinear system, the Simplex-Partition
approximation and the Nested PWA approximation. Even though the Nested PWA
model has only 16 regions compared to the 1,000 regions of the Simplex-Partition
model, the nested results in Figure 6 better reproduce the behaviour of the original
system in Figure 4 as the Simplex results in Figure 5 settles to an equilibrium point
while the other systems continue to oscillate.
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Figure 4: Simulation of the exact nonlinear Lorenz attractor

Figure 5: Simulation of the Simplex-Partition approximation to the Lorenz attractor
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Figure 6: Simulation of the Nested PWA approximation to the Lorenz attractor
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