
Experience Report: Verifying Properties of an
Electro-Mechanical Braking System †

Thomas Strathmann1 and Jens Oehlerking2

1OFFIS e. V., Escherweg 2, Oldenburg, Germany,
thomas.strathmann@offis.de

2Robert Bosch GmbH, Stuttgart, Germany,
jens.oehlerking@de.bosch.com

April 9, 2015

Abstract

In this experience report, we apply the hybrid verification tools iSAT-ODE,
Flow*, and S-TaLiRo to a case study consisting of an experimental electro-
mechanical braking system. Starting from a Simulink closed-loop model, we
describe the derivation of hybrid automaton models for plant and controller
and give verifcation results for the different tools.

1 Introduction
In recent years, several verification tools of increasing maturity have been devel-
oped within the hybrid systems community. In this paper, we report on our experi-
ence with applying some of these tools to a case study. These tools are iSAT-ODE
[ERNF12], Flow* [CÁS13], and S-TaLiRo [ALFS11].

The case study we used for this purpose is an experimental electro-mechanical
braking system consisting of a plant model and a controller comprising both feedback
and feedforward control. While the model itself is not used for the development
of actual products, it is representative of some challenges in the development of
automotive systems. Based on this example, we show model simplifications under
which we were able to obtain useful results from the verification tools. A special
focus here are verification results including parameter variations within the model
to achieve a quantifiable form of robustness for the property in question.

Related work includes [FHQW15], where the tool SpaceEx [FLGD+11] has been
applied to a variant of this same case study, with special focus on timing variations
of the control software. Also, in [ZYZ+14] the application of iSAT-ODE and Flow*
for the verification of a closed-loop control system subject to parameter variations is
described.

The paper is strucured as follows. We will first describe the case study in Sec-
tion 2 and then derive a simplified model from the equations of the original model
in Section 3, for use with the tools iSAT-ODE and Flow*. In Section 4 we then
describe modifications to this base model required for the different tools and give the
verification results.

†This work has been partially funded by the German Ministry for Education and Research
(BMBF) under the funding ID 01IS12005M (SPES_XT Project)

1



2 The Experimental Electro-Mechanical Braking Sys-
tem

The system under analysis consists of an experimental electro-mechanical braking
system, together with its controller, implemented in software.

Figure 1: Schematic of the electro-mechanical brake with electrical engine on left
hand side, brake disc connected to wheel on right hand side and brake caliper around
the brake disc

Figure 1 shows an illustration of the the braking system. Its left hand side consists
of an electrical engine, which is used to push the left side of the brake caliper against
the brake disk. The brake disc is connected to the wheel, so that contact between
caliper and disc will result in vehicle deceleration. Even when contact between caliper
and disc has been established, the electrical engine can be used to exert additional
braking force, allowing also for fine-grained control of the vehicle deceleration.

The original control software is a hybrid controller with modes for the idle state
(caliper in the leftmost position), positioning modes (caliper left to right and right to
left) and a force control mode with respect to an externally supplied set point. The
individual control strategies per mode consist of a model-based feedforward controller
and feedback through a PI-controller to account for disturbances and modeling errors.
For some of the tools, we will only examine the feedback component of the controller,
with others we were also able to deal with the feedforward control. Also, we assume
that the braking force and the position of the caliper are readily available, while
in reality they are estimated from the motor current. In general, the controller
parameters are chosen with respect to two conflicting goals: a) ensuring a quick
reaction to a brake request and b) minimizing the jerk of the vehicle (i.e., avoiding
sudden changes of acceleration) by making the contact between caliper and disc as
smooth as possible.

In its simplest version, the closed-loop system is numerically stiff and piecewise
affine. The stiffness makes the system difficult to analyze with flowpipe-based meth-
ods. For example, in the context of [FHQW15], SpaceEx had difficulties with the
dynamics of the braking mode. Furthermore, the model contains a number of pa-
rameters: the physical parameters of the brake hardware and the parameters of the
PI-controller. For both these sets of parameters, parametric verification is useful in
practice. Since the physical parameters of the brake are subject to wear and tear,
as well as production tolerances, useful verification results are only obtained if they
are robust with respect to these factors. The controller parameters are also often
modified post-deployment, for example to take into account not formally modelled
requirements such as vibration or noise, so that properties should ideally be verified

2



for entire parameter ranges.
The two verification requirements taken into consideration for this experience

report are:

• As soon as braking is requested, the contact between caliper and disk should
occur within 23 ms.

• The brake caliper velocity upon contact should be less than 2 mm/s to limit
jerk.

3 Modelling
Figure 2(a) shows a simplified model of the electro-mechanical brake. A DC-motor
moves the brake caliper towards the brake disc. Once the caliper passes the posi-
tion x0, a braking force is exerted on the brake disc (cf. figure 2(b)). As a simplifying
assumption the brake disc is modelled as a stiff spring.

(a) Schematic drawing of the simplified
plant model

(b) Mode dependency of the brake
force

Figure 2: Simplified model of the plant

The system is originally given as a Simulink model that needs to be translated
into a form that is suitable for analysis with iSAT-ODE and Flow*. As a first step we
identify the ordinary differential equations encoded as Simulink subsystem blocks.

İ =
1

L
· (V − tanh(100 · I) · Vbrush −R · I −K · ω) (1)

ω̇ =
1

J
· (K · I − cgear · (ϕ− i · x)− drot · ω) (2)

ϕ̇ = ω (3)

v̇ =
1

m
· (cgear · (ϕ− i · x) · i− cbrake · x1 − dtrans · v) (4)

ẋ = v (5)

There are five continuous state variables in total: The voltage V applied to the
motor by the controller, the motor current I, the angular velocity ω and angle ϕ of
the motor shaft, as well as the velocity v and position x of the brake caliper. The
auxiliary variable x1 depends on whether there is contact between the brake caliper
and disc.

x1 =

x− x0 if x ≥ x0

0 otherwise
(6)

Because the properties we are interested in in this report only deal with the mode
where there is no contact, we will disregard the situation where x > x0 and conse-
quently assume x1 = 0 in the following.

3



As preliminary experiments using both Flow* and iSAT-ODE with these equa-
tions posed significant problems that caused the numerical computation of the flow-
pipes to get stuck in several instances (sometimes aborted due to memory exhaus-
tion), the plant model subsequently used in the closed-loop system model is based
on a simplified version of equations (1) through (6). Although the behaviour of the
simplified system quantitatively differs from the full model, it poses the same nu-
merical challenges due to the stiffness of the ODEs. By letting ϕ = i · x (where i is
the transmission ratio of the gear box that translates the rotational movement of the
motor into the linear movement of the brake caliper) and assuming ω̇ = 0 (because
ω̇ is negligible compared to K · I) we derive ω = K

drot
· I. And because Vbrush = 0 in

the original model1 we arrive at

İ =
1

L
· (V −R · I − K2

drot
· I). (7)

Finally, we combine equations (2) through (5) using the physical identity ω
i = v to

derive the second of the simplified ODEs:

ẋ =
K

drot · i
· I (8)

Given equations (7) and (8) we can define a hybrid automaton for the closed-loop
system where the voltage is set by a PI-controller that takes as input the difference
between the reference position x0 and the actual position x of the brake caliper.

İ = 1
L ·
(

(KP · (x0 − x) +KI · xc)− (R+ K2

drot
) · I

)
ẋ = K

i·drot
· I

ẋc = x0 − x

I = 0 ∧ x = 0 ∧ xc = 0

Figure 3: ODEs of the closed-loop model of the plant with a continuous-time PI-
controller depicted as a hybrid automaton

As the controller is actually implemented in software, we also define a hybrid
automaton (cf. Figure 4) that incorporates a simple discrete-time version of the PI-
controller which works by uniform sampling of the control error and calculation of the
integral part by explicit Euler integration. The result is a sampled-data closed loop
system. Note that, for fixed sampling, the resulting system could also be represented
by a discrete-time linear system, which is generally easier to analyze. The reason
the model is in the form of a hybrid automaton is that, by changing the update
of the clock variable T to a non-deterministic assignment T ′ :∈ [−ζ, ζ] for a small
constant ζ << Tsample we can also arrive at a simplistic model of sampling jitter.

4 Verification
In this section we describe in more detail some of the tool-specific modelling choices
as well as results from selected experiments we performed with these tools including
performance figures. All experiments with Flow* and iSAT-ODE were performed
on a computer with 2.3 GHz AMD Opteron 6376 processor and 512 GiB RAM

1Vbrush represents the losses due to friction in the engine, which were seen as negligible and
parameterised with 0 in the Simulink model.

4



İ = 1
L ·
(

(KP · xe +KI · xc)− (R+ K2

drot
) · I

)
ẋ = K

i·drot
· I

Ṫ = 1

ẋe = 0

ẋc = 0

T ≤ Tsample

I = 0 ∧ x = 0 ∧ T = 0 ∧ xe = 0 ∧ xc = 0

T ≥ Tsample /

T ′ := 0 ∧
x′e := x0 − x ∧
x′c := xc + Tsample · (x0 − x)

Figure 4: Hybrid automaton of the plant with discrete-time PI-controller

running GNU/Linux. The experiments with S-TaLiRo were performed under Mat-
lab/Simulink R2014a 64-Bit on a computer with 3.4 GHz Intel Core i5-3570 processor
and 8 GiB RAM running 64-Bit Windows 7 Professional.

4.1 iSAT-ODE
iSAT-ODE [ERNF12] is a tool for bounded model checking of non-linear hybrid
systems based on methods from SAT and constraint solving as well as numerical
methods for ordinary differential equations. The hybrid system must be given in
a predicative encoding, i.e. the initial state, final state, and transition relation are
defined by first-order logic formulae. The ODE extension supports the safe enclosure
of solutions of ODEs expressed as derivatives with respect to the variable time. In
our encoding of the discrete-time automaton in Figure 4 the existence of this global
time variable obviates the need for an additional timer variable T to model the
sampling and discrete computations.

Because iSAT-ODE works by splitting intervals, the initial ranges of the contin-
uous state variables of the model should be bounded as tightly as possible in order
to reduce the size of the reachable state space. We used a Simulink simulation of the
simplified model used in both the iSAT-ODE and Flow* experiments to derive rea-
sonably tight yet conservative bounds for the state variables. A plot of this simulation
is shown in Figure 5. From this plot we can also deduce the time point t0 ≈ 0.146
where the caliper makes contact with the disc. We can use this as a reference value
to examine the different behaviours of the system that arise under variations of the
parameters.

Requirement 1 can be expressed as the formula abs(x - 0.05) <= 0.002 and
time < t0 that characterises the state whose reachability iSAT-ODE checks. On the
continuous-time model without parameter variations this property can be verified in
3 seconds. When the resistance R can vary between its nominal value of 0.5 Ω and
0.7 Ω, iSAT-ODE can verify in 312 seconds that the response time of the system is
slower, i.e. that the state characterised by the formula x < 0.048 and time > t0 is
reachable. In general, finding the right target formula for these kinds of verification
task involves starting from a known baseline behaviour and successively refining the
formula and the ranges of the variables involved.

4.2 Flow*
Flow* [CÁS13] is a tool for safety verification of hybrid automata defined by non-
linear differential equations with possibly uncertain initial conditions, and non-deter-
ministic resets. It computes an overapproximation of the reachable state space in

5



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

500.0001

V

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

859.257

I

0 0.05 0.086 0.1 0.146 0.2
0

0.02

0.04

0.06

x

Figure 5: Plot of the behaviour of the simplified Simulink model with the points
where the caliper reaches x0 − ε and x0 highlighted

terms of Taylor models that represent the flowpipes up to a bounded time horizon
and maximum number of discrete jumps.

As Flow* can deal with hybrid automata given in a textual format, it can operate
directly on the automata presented in Section 3. Figure 6 shows the result of applying
Flow* to the discrete-time hybrid automaton from where the physical parameter
represented by the coefficient 1

L · (R + K2

drot
) varies by ±3 from its nominal value of

504, but stays constant during a run of the tool. This encoding of the uncertainty
in the physical parameters is a compromise that takes into account the difficult
numerical properties of the differential equations used. The sampling interval was
set to Tsample = 10−4. The simulation was run with time horizon 0.1 seconds and
a maximum of 1001 jumps. The computation of the flowpipes took 43842 seconds
using a minimum step size of 10−10 for Taylor models of order 3. This relatively
small steps is due to the stiffness of the ODEs of the plant model. With larger
step sizes the flowpipe computation is aborted because Flow* cannot ensure that
Taylor models safely enclose the flowpipes. Due to the small step size, a small order
of the Taylor models is sufficient. The base model with a clock jitter in the range
[−10−8, 107] took 48100 seconds computing time with a similar result.

As the computed flowpipes represent an approximation of all possible trajectories
of the system, the designer can quickly spot problematic deviations from the nominal
behaviour due to parameter variations. This is in contrast to the single counter-
example trace produced by tools like iSAT-ODE.

4.3 S-TaLiRo
S-TaLiRo [ALFS11] is a tool for falsifying requirements formalised in metric tem-
poral logic (MTL) by finding a system trajectory that violates the requirement. This
is a fundamentally different approach than the bounded model checking procedure
employed by iSAT-ODE and the flowpipe construction of Flow*. The falsification
procedure is based on minimisation of a robustness metric. In essence, this robust-
ness value defines a tube around the trajectory that is invariant with respect to
the property under consideration. This provides insight into how robustly a model
satisfies a formal specification, which is especially useful for dealing with variable pa-
rameters or other uncertainties in the model. Because S-TaLiRo is integrated into

6



Figure 6: Plot of the result of applying Flow* to the discrete-time model with pa-
rameter variations

Matlab/Simulink we were able to use the original simulation model of the brake.
The requirement that the position of the brake disc reaches the set point x0

with a tolerance ε and stays there can be formalised as the MTL formula ϕ1 ≡
♦[0, t0] � (x ≥ x0 − ε ∧ x ≤ x0 + ε). For the experiments we fix the parameters
of the formula to be t0 = 0.033 seconds (because the brake request is issued at
t = 0.01) and ε = 0.002. Uncertainty in the measurement of the position x of
the brake caliper is modelled as an input xnoise that is added to the input of the
controller. This disturbance was generated as a piecewise constant signal with 50
sample points over the time of 0.05 seconds which is a compromise between the
number of parameters and the quality of the noise signal. The result of falsifying ϕ1

for a model with xnoise ∈ [−0.001, 0.001] is shown in Figure 7(a). S-TaLiRo finds
a simulation run that violates the requirement in 130 seconds using 10 runs, where
each run corresponds to a different initial value of the uncertain parameters that is
used as a starting point for the optimisation procedure. Manual inspection of the
plot reveals that at time t = 0.033 the caliper position is x = 0.04788.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

x

t

(a) Plot of falsifying ϕ1 for a model with sensor
noise

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

t

x

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−1

0

1

2

3

4

5

v

(b) Plot of falsifying ¬ϕ2 in S-TaLiRo with-
out any parameter variations

Figure 7: Plots of falsifying trajectories found by S-TaLiRo

The set point x0 is depicted by the horizontal solid red line and the tube around
it defined by ε is depicted as the two dashed red lines. Letting the resistance R and
inductance L of the motor vary with a tolerance of 5% yields a model that also violates
the formula ϕ1. Using 10 runs, S-TaLiRo finds the valuation R = 0.52474 and
L = 0.0010239 that violates the requirement with robustness −0.0015 in 265 seconds.

The second requirement that the velocity of the caliper should stay below 2 mm/s

7



upon contact with the brake disc is formalised as ϕ2 ≡ � ((x ≤ x0 ∧X(x ≥ x0))→
v ≤ 0.2). The model without any parameter variations or perturbations does not sat-
isfy this requirement robustly. S-TaLiRo reports robustness value of −7.1878 · 10−7

for falsifying ¬ϕ2, computed in 2.3 seconds. Figure 7(b) shows the corresponding
plot with position x on the left (blue) and velocity v on the right (green) ordinate
axis.

5 Conclusion
We examined an industrial case study with the help of three different state-of-the-
art verification tools for hybrid systems, two of them based on computing the full
reachable state space (Flow*) or a single trace (iSAT-ODE) up to a user-specified
bound, and the third (S-TaLiRo) based on simulation. The tools iSAT-ODE and
Flow* were used to verify properties on simplified continuous- and discrete-time
models of the system under parameter variations. Due to the very stiff dynamics of
the case study there are at present limits to what can be achieved with tools that
explore the full state space. In a design process where simulation models are readily
available, tools such as S-TaLiRo are a viable alternative. Although simulation-
based tools do not provide the same kind of guarantees because they only sample a
number of trajectories of the system, they can provide useful insights into the system
behaviour, which are already very helpful in the design process.

References
[ALFS11] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan.

S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems.
In Tools and algorithms for the construction and analysis of systems,
volume 6605, pages 254–257. Springer, 2011.

[CÁS13] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An Analyzer
for Non-Linear Hybrid Systems. In Proc. of the 25th Int. Conf. on
Computer Aided Verification (CAV’13), volume 8044 of LNCS, pages
258–263. Springer-Verlag, 2013.

[ERNF12] A. Eggers, N. Ramdani, N. S. Nedialkov, and M. Fränzle. Improving the
SAT modulo ODE approach to hybrid systems analysis by combining
different enclosure methods. In Software & Systems Modeling, pages
1–28, 2012.

[FHQW15] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle. Formal Analysis of
Timing Effects on Closed-loop Properties of Control Software. In RTSS
2015, 2015.

[FLGD+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable
verification of hybrid systems. In Computer Aided Verification, pages
379–395. Springer Berlin/Heidelberg, 2011.

[ZYZ+14] H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou, and Y. Chen. Formal Veri-
fication of a Descent Guidance Control Program of a Lunar Lander. In
FM 2014: Formal Methods, volume 8442 of Lecture Notes in Computer
Science, pages 733–748. Springer International Publishing, 2014.

8


