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Abstract

Formal methods refers broadly to techniques for the verification and automatic synthesis of tran-

sition systems that satisfy desirable properties exactly or within some statistical tolerance. Though

historically developed for concurrent software, recent work has brought these methods to bear on mo-

tion planning in robotics. Challenges specific to robotics, such as uncertainty and real-time constraints,

have motivated extensions to existing methods and entirely novel treatments. However, compared to

other areas within robotics research, demonstrations of formal methods have been surprisingly small-

scale. The proposed benchmark seeks to motivate advancement of the state of the art toward practical

realization by testing scalability of existing tools, and motivating improvements.

1 Introduction

The presented benchmark is part of the first challenge on formal methods for robotics, which
will henceforth be referred to simply as “the Challenge.” It is to be hosted at the Interna-
tional Conference on Robotics and Automation (ICRA) in May 2016. There are two founding
ambitions of the Challenge: to develop benchmark problems for research in so-called “formal
methods for robotics,” and to create standard interfaces, formats, etc. for expressing problems
and using tools that implement methods described in the research literature. Our effort is
analogous to that of SMT-LIB, which is for research in satisfiability modulo theories

The Challenge itself will consist of three problem domains that touch on a diversity of
difficulties one would need to address in a practical deployment. These problem domains
together involve many fronts of current work in formal methods for robotics. To avoid requiring
too general of a solution—and in particular, to improve accessibility for a broad group of
potential competitors—entries to the challenge are permitted to select a subset of these domains.
More precisely, each team may enter any number of control programs, each of which may be
used on any subset of the problem domains.

Here we present details of the first such problem domain, that of synthesis for high-
dimensional systems modeled by chains of integrators. We describe the problem domain, as
well as currently available preparation materials for potential competitors, such as elementary
solutions that establish feasibility of the problems, provide reference implementations for the
challenge execution framework, and give teams something on which to build, should they choose
to do so.

2 Preliminaries

This section introduces notation used throughout the rest of the paper. Let A be a set.
2A denotes the set of all subsets of A. The set of real numbers is denoted by R. Let



x = (x1, . . . , xn) ∈ Rn. For p ≥ 1, the p-norm of x is defined to be

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

. (1)

The 2-norm is also known as the Euclidean distance. The ∞-norm is defined as

‖x‖∞ = max
i
|xi|. (2)

Linear-time temporal logic (LTL) is an extension of Boolean (or propositional) logic that
describes properties of countably infinite sequences of events [1]. The two basic temporal
operators are U (pronounced “until”) and© (pronounced “next”). The formula ψUϕ requires
that formula ψ holds until a state satisfying ϕ is reached and such a state must eventually be
reached. The operator 2 is also used; informally, 2ψ requires ψ is satisfied by all states reached
during an execution. Intuitively the operator 2 is dual to 2; informally, 2ψ requires that a
state satisfying ψ occurs in finite time.

A convex polytope is a bounded region defined by the intersection of finitely many halfspaces,
each of which is defined by a linear inequality. Formally, a polytope defined by k halfspaces, in
a space X ⊆ Rn is defined by

{x ∈ X | Hx ≤ K}

for some H ∈ Rk×n and K ∈ Rk. There are many useful computations known for polytopes,
many of which are fast, e.g., intersection [2].

The discrete notions of temporal logic are related to the real-valued spaces of continuous
dynamical systems as follows. Suppose a state space contains finitely many polytopes, and
each polytope is regarded as labeled by a Boolean proposition. Let AP be the set of all such
Boolean propositions. A trajectory through the space of polytopes is labeled with a sequence
of elements of 2AP corresponding to the sequence of polytopes with which it intersects.

3 Terminology

The problem domain described in this paper is referred to as the scaling chains of integrators
domain. Within this problem domain, a problem instance is a particular workspace, arrange-
ment of obstacles, labeling of the workspace, selection of parameters for the robot dynamics,
and a task formula. A controller is the basic entity provided as a solution to the problem
domain, and must be able to solve any instance.

4 Scaling chains of integrators

Of the domains in the Challenge, this problem domain is the simplest in terms of dynamics
and specifications, yet the system to be controlled can be scaled easily to arbitrarily many
dimensions. While this problem is abstract in the sense that it is not modeling a specific
physical system, it is well-motivated because it is one of the normal forms for expressing linear
systems. More precisely, for a linear system to be controllable, it is necessary and sufficient
condition to express the system as a chain of integrators. Moreover, the double-integrator is
just the basic force equation of Newtonian mechanics, up to a scaling factor, and so widely
used to model systems for which acceleration is the control input. Informally, this benchmark
problem domain concerns controlling acceleration or a higher order derivative of a point-mass in



a high-dimensional space so as to visit goal regions and avoid obstacles. The precise description
is given below.

4.1 Dynamics and constraints

Let n and m be positive integers. Consider the differential equation

Dmq = u, (3)

where q : [0,∞[→ Rn and D is the differential operator. The input u is bounded as ‖u(t)‖1 ≤
umax. The system is called a chain of integrators because it can be rewritten as a linear control
system

ẋ1 = x2

ẋ2 = x3

...

ẋm−1 = xm

ẋm = u

y = x1

(4)

where for time t, each xi(t) ∈ Rn for i = 1, . . . ,m, and x(t) = (x1(t), . . . , xm(t)) ∈ Rnm. The
output trajectories of (4) are exactly those of (3), given the same input, and thus we call them
equivalent. In (3), control input is applied as the m-th derivative of an n-dimensional variable
q, and the intermediate derivatives are made explicit in (4). A notable particular case is m = 2,
which is called the “double integrator”. If n ≤ 3 then q may be referred to as the “position”.

To introduce process and sensor noise, consider the 2-dimensional system

ẋ =

(
0 1
0 0

)
x+

(
0
1

)
u+ ξ (5)

y =
(

1 0
)
x+ η, (6)

where ξ and η are either bounded disturbances (nondeterministic) or stochastic processes.
Equivalence with (3) in the case of n = 1,m = 2 and ξ = η = 0 is apparent using x1 = q
and x2 = q̇. For n > 1, the matrices in (5) and (6) can be repeated in block diagonal form to
yield a new linear time-invariant system of dimension 2n and which is again equivalent to (3)
for m = 2.

4.2 Specifications

Imposing task specifications in LTL makes the problem of control synthesis for systems subject
to the dynamics in Section 4.1 a hybrid control problem. Task specifications will require vis-
itation of regions while avoiding obstacles. These can be regarded as a generalized version of
classical motion planning. There are two forms of specifications:

q(0) = init ∧2 (q(t) /∈ Obs) ∧
∧
i

2 2 goali (7)

and
q(0) = init ∧2 (q(t) /∈ Obs) ∧

∧
i

(counteri ≤ Ti) U goali, (8)



Figure 1: Illustration of an obstacle-avoiding double integrator trajectory in three dimensions

where Obs ⊂ Rn is the obstacle set, which is represented by a finite union of polytopes. For
each i, counteri is a discrete clock that enforces the real-time deadline Ti of reaching region
goali. Goal region goali is defined by a convex polytope. The initial position is a single point,
init ∈ Rn. As part of the specification form (8), a time of initialization and rate of progression
of the discrete counters is specified. These are significant because they determine in what order
and how quickly the goal regions must be reached.

Many approaches in the literature on formal methods for robotics provide at least fragments
of a relevant solution, e.g., by providing methods of discrete abstraction. Others can be directly
applied, e.g., Kloetzer and Belta [3], and Wolff et al. [4] present algorithms for linear systems,
labeled polytopes, and LTL specifications. The objective of this benchmark is to provide a
platform for demonstrating scalable implementations of these existing approaches, as well as to
motivate new ones.

4.3 Implementation plan for the challenge

This problem domain will be evaluated entirely within a numerical simulation. As such, com-
petitors will submit controllers for this part of the challenge before the conference, and results
will be obtained during live runs at ICRA. After completion of each run in real-time, using
software released as part of the problem domain source code, animations will be generated to
depict results. In order to facilitate visualization of the results, each specification will consist
of a conjunction of specifications, each of which governs no more than three dimensions of the
state space. This enables plotting trajectories in these 3D subspaces, and visually verifying
satisfaction of the specification. Figure 1 depicts such a visualization. Section 6 describes our
implementation in further detail.

The main evaluation metric for this domain will be scalability of solutions to high dimensions
and large problem sizes. As such, we are currently investigating feasibility of running the trials
for this domain on clusters or cloud computing services.



5 Evaluation

Our goal is to allow maximal flexibility of solution form, and allow entries to be provided as
black-box programs with defined interfaces. A static evaluation proving that the solution is
correct would violate this ideal by, for example, requiring submissions to be expressed in part
using Promela, so that they could be checked it with Spin, or provide a linearized-form closed
system in order to generate a certificate via SOS programming.

Instead, the evaluation will be dynamic, i.e., submissions will be evaluated by running them.
It will also be trial-based, i.e., each controller will be run for a fixed set of trials that each have the
adversary playing a particular strategy. Some care will be made to cover the set of environment
strategies.

5.1 Trajectory durations

Since the semantics of LTL is over infinite executions, the duration for which each trial will be
run must be specified. The Challenge will feature trials with both pre-specified and unspecified
(yet finite) execution durations.

• unspecified in the problem: The duration for which each trial will run (in terms of
execution time) will be selected randomly at the time of evaluation.

• specified in the problem instance: There are two approaches here:

– A fixed duration for a timeout will be given as part of the instance description. Time
discretization of this duration is part of the solution.

– Termination occurs upon reaching a final state. These specifications are necessarily
co-safe.

The chief difficulty in the evaluation is in verifying liveness properties of black-box con-
trollers. To mitigate this problem, we will allow teams the following two options:

• provide trajectories of lasso form, with a pre-specified tolerance for closing the loop of the
lasso.

• declare a minimum execution time required to demonstrate correctness.

5.2 Scoring

Entries to the Challenge will be scored on the basis of the cumulative time required to achieve
pre-specified milestones once given a specification. For the scaling chains of integrators domain
in particular, scoring will be purely on the basis of the time required to synthesize a trajec-
tory that satisfies the specification. Satisfaction will be checked by inspection by plotting the
trajectories in each 3D subspace appearing in the subformulas.

6 Implementation

We now describe our implementation for this benchmark against which potential competitors
can test their controllers. The source code available includes elementary solutions that estab-
lish feasibility of the problem instances, provide reference implementations for the challenge
execution framework, and give teams something on which to build, should they choose to do
so. All code and documentation is available on the Formal Methods for Robotics Challenge



repository, at https://github.com/fmrchallenge/fmrbenchmark/.

There are four major kinds of entities in the repository:

• benchmarks;

• analysis tools for reviewing results from using benchmarks;

• examples demonstrating components of benchmarks and solution controllers;

• documentation.

Spanning all four of the above kinds is the supporting infrastructure. This refers to header
files, message formats, etc. that may be used by more than one benchmark and that may be of
independent interest, besides benchmarking.

6.1 Support for platforms and programming languages

While it may be possible to build the benchmarks and infrastructure on other platforms, most
testing currently is done with Ubuntu 14.04 running Linux x86 64 and the following:

• ROS Indigo

• Gazebo as used with ROS

• The benchmarks are primarily implemented in C++ and C. As of version 0.0.0, most of
the examples and tools for reviewing results are in C++ and Python.

Additional dependencies required and instructions for building the scaling chains of integra-
tors domain can be found in the User’s Guide at http://docs.fmrchallenge.org/en/v0.0.

0/integrator_chains.html.

6.2 Problem generation

Recall that the basic problem is to find a controller for a given chain of integrators system so
that all trajectories repeatedly reach several regions while avoiding others. Let $FMRBENCHMARK

be the absolute path to a copy of the fmrbenchmark repository on your machine. Af-
ter building the examples demonstrating the chain of integrators benchmark according to
the above instructions, one of the resulting programs is genproblem, the source of which is
$FMRBENCHMARK/domains/integrator chains/dynamaestro/examples/standalone/genproblem.cpp. The
output is a problem instance in JSON, which can be visualized using the script
$FMRBENCHMARK/domains/integrator chains/analysis/plotp.py.

A collection of trials is defined by a configuration file in JSON format. For example:

{

"number_trials": 5,

"output_dim_bounds": [1, 3],

"number_integrators_bounds": [1, 3],

"number_goals_bounds": [1, 10],

"number_obstacles_bounds": [0, 4],

"period_bounds": [0.01, 0.05],

"Y": [10],

"U": [1],

https://github.com/fmrchallenge/fmrbenchmark/
http://docs.fmrchallenge.org/en/v0.0.0/integrator_chains.html
http://docs.fmrchallenge.org/en/v0.0.0/integrator_chains.html


"duration_bounds": [30, 60]

}

Trials are randomly generated subject to the constraints in the configuration file. In the
above example, 5 trials will be generated with between 1 and 3 output dimensions, for a chain
of between 1 and 3 integrators, with specifications of between 1 and 10 goals and between 0 and
4 obstacles, with the original system discretized using a period randomly drawn from between
0.01s and 0.05s, the output space bounded above and below by 10m in each dimension and the
input space bounded above and below by 1m in every dimension.

6.3 Running controllers

The lqr.py example controller is provided to demonstrate how a submitted entry should interact
with the benchmark code. To initiate the performance of a collection of trials defined by
the configuration file mc-small-out3-order3.json in the ROS package sci concrete examples of
example controllers,

• create a catkin workspace as described in the User’s Guide

• run

$FMRBENCHMARK/domains/integrator_chains/trial-runner.py -l -f

mydata.json src/sci_concrete_examples/trialconf/mc-small-out3-order3.json

This will cause trial data to be saved to the file mydata.json in the local directory from
where the above command is executed.

• In a separate terminal, run the example controller using:

roslaunch sci_concrete_examples lqr.launch

• You can observe the sequence of states and control inputs using rostopic echo state and
rostopic echo input, respectively. At each time increment, the state labeling is published
to the topic /dynamaestro/loutput as an array of strings (labels) corresponding to the
polytopes containing the output at that time.

• Once all trials have completed, the trial data can be examined using tdstat.py. E.g., to
get a summary about the data for each trial,

$FMRBENCHMARK/domains/integrator_chains/analysis/tdstat.py -s mydata.json

To get the labeling of the trajectory for trial 0, modulo repetition,

$FMRBENCHMARK/domains/integrator_chains/analysis/tdstat.py -t 0 --wordmodrep mydata.json
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