
A CPS Approach to Robot Design
Walid Taha, Marcia O’Malley, Robert Cartwright, Aaron Ames

Department of Computer Science and Department of Mechanical and Material Engineering, Rice University
School of Mechanical Engineering, Georgia Institute of Technology and CERES, Halmstad University

Objective: To accelerate innovation in robot design Validated Enclosures for Simulating Hybrid Systems

Understanding and Accelerating The Innovation Process

Rice and HH PI: Prof. Walid Taha GaTech PI: Prof. Aaron Ames

Research Issues
• Formalizing modeling

processes
• Mapping from rigid-body

model to mathematical
equations

• Mapping from equations to
an executable form of
equations (DAE or ODE)

• Modeling and simulating
hybrid (continuous/discrete)
models

• Characterizing well-behaved
executable class of
mathematical equations

• Model validation

To Probe Further

Acknowledgement
The research team acknowledges the support of the National Science Foundation through grants
NSF-CPS-1136099/1136104. Enclosure work is joint with Dr. Michal Konecny, Aston University
and Prof. Eugenio Moggi, University of Genova.

Prototype Test Bed: Acumen

• The MathWorks: Interest in educational
aspects of project

• Volvo Technology (VTEC): Partner in a
Swedish VINOVA Foundation project
focusing on Advanced Driver Assistance
Systems (ADAS). Acumen is being used
for developing models of vehicles, ADAS
functionality, and test scenarios

Dealing with Enclosed Initial Values & Zeno Behavior

Gaps In the Process of Modeling and Simulation

New Course: Introduction to Cyber-Physical System

Industrial Collaborators

Contact: Walid.Taha@hh.se | aaron.ames@me.gatech.edu

• Innovation is an iterative process
• Physical prototyping can be

• Costly
• Time consuming
• Unreliable

• Explicit analysis limits to simple models
• Today’s simulation tools have problems

• Time/effort/ability to model/
simulate

Idea

Model

Prototype

Product

Bug

Flaw

Recall

• Validated method produce enclosures guaranteed to contain real
answer

• Challenges (and our approach): 1) Enclosing solutions to non-linear
systems (Picard operator), 2) Dealing with enclosures of initial
values (new generalization of Picard), 3) Dealing with events (new
methods), 4) Dealing with Zeno behavior (new methods)

Ball and Truck Images from Wikipedia Commons

• Emphasis on themes:
• The need for new expertise
• The need for hybrid models
• Energy as a pervasive concern

• Project: Build a Ping Pong robot
• Using 3D visualization
• Students develop CPS players
• Realism gradually increased

• Course Content
• Big picture overview of field
• Modeling physical systems
• Modeling computing systems
• Principles of control theory
• Hybrid systems
• Game theory

• Flipped classroom format
• Taught five times at Halmstad

• Core language hybrid (mixed continuous/discrete) modeling
• Support for equations and dynamic object creation/destruction
• Support for automatic 2D plotting and 3D visualization

• Above: Event tree used to compute
enclosures for Zeno systems in finite
time

• Left: Actual enclosure computed for
three Zeno systems. In all cases, better
results are attained by adding explicit
assertions into the model

• Right: Enclosed (or
“uncertain”) initial
values are handled
solving a higher
dimensional problem

• Information about the project as well as the activities and publications of the group can be found
at the Effective Modeling Group web-page (www.effective-modeling.org)

• The Acumen language testbed is distributed under BSD license, and can be downloaded from the
language web-page (wwww.acumen-language.org)

• For more about the course, see bit.ly/LNCPS-2015

Bouncing ball example:
 x’’ = -10
 if x = 0 then x’+ = -x’/2

• � and m — passed on to solve-VtE
• d > 0 — minimum step size
• K — maximum size of event trees

Intuitively, solve-hybrid sub-divides TT in a left-biased depth-first
fashion and combines solutions to the IVP over the parts of TT into
a solution over all of TT. The subdivision is depth-bounded by the
minimum step size d and the criterion that further subdivision does
not improve the overall solution.

Solutions to an IVP on an interval T ✓ TT are obtained using solve-
VtE in the following way:

• solve-VtE is applied on T for each S i and the resulting states
are combined using operator M from Definition 6.5 so that there
are no two states with the same mode.
• T is split into the sub-intervals T L and T R with T L = T R.
• solve-VtE is applied on T L for each S i and the results are

combined to obtain uncertain initial states at T R.
• solve-VtE is applied on T R for each of the uncertain initial

states obtained for T R and the results are combined.
• If the result obtained from T L and T R does not improve on that

for T , or if the width of T L or T R is less than d, the enclosure
for T is returned.
• Otherwise, solve-hybrid is applied recursively over T L, yield-

ing new uncertain states at T R. solve-hybrid is then applied re-
cursively over T R.

If solve-VtE produces an event tree of size greater than K for a
given interval T , the results collected for T are discarded and T
is split into sub-intervals T L and T R and solve-hybrid is applied
recursively as described above.

Note that this process may fail to produce a result if computation is
halted for a time segment of least admissible width. In this case no
enclosure will be produced for TT.

The result is a piecewise enclosure over TT obtained by stitching
the enclosures given by solve-VtE for each T ✓ TT where solve-
hybrid did not descend to T L and T R.

8. Implementation and experimental results
We implemented a hybrid system simulator in Haskell, closely
following our semantics, using an interval polynomial arithmetic
provided by the AERN library [17]. This section presents initial
results that confirm the expected basic termination, enclosure, and
performance characteristics.

Figure 6 gives a flavor of the performance of the implementation on
a modern Linux desktop computer for a collection of small IVP’s
comprising variations of the ODE’s x00 = �x and x0 = �x with
exact and uncertain initial conditions and reset events.

To show that our approach can enclose Zeno behavior, we simu-
lated the following hybrid IVP’s: (1) The bouncing ball system
BB(10, 1/2) from the initial state x = 5, v = 0 over T = [0, 3.5]. (2)
The bouncing ball system with a drop BBD(10, 1/2, 3 7!2 0) from
the initial state x = 5, v = 0 over T = [0, 3.5]. (3) The two tanks
system 2T(2, 3, 4) from the initial state Fill1, x1 = 1, x2 = 1 over
T = [0, 2.5]. (4) Equivalent versions of the above systems, each
with an additional (redundant) variable that facilitates a key domain
constraint, as specified in Fig. 7. For the bouncing ball systems we
add a component representing the sum of kinetic and potential en-
ergy of the ball. For the two tanks system we add a sum of the two
fills. Enclosures for these examples are plotted in Fig. 8. They were

� � �

�

�

�

�

�

� � ��

�

�

�

���

��
��

Figure 8: Enclosures for systems with Zeno behavior. The left
column corresponds to IVP’s of the systems BB, BBD and 2T. The
right column corresponds to the analogous IVP’s of the equivalent
systems EBB, EBBD and S2T.

obtained with the minimum step size d = 2�21 ⇠ 4.7 · 10�7, � = 0.5,
K = 30 and m = 20.

9. Conclusions
We have presented a self-contained specification for the semantics
of a simulation language that can express hybrid models. The se-
mantics presented in this paper overcomes significant shortcomings
of previous formal treatments of the simulation of such systems re-
lating to event detection. These shortcomings are witnessed either
by failing to detect events or failing to progress past a Zeno point.

In terms of future work, we are interested in more detailed analysis
of the performance characteristics of the implementation when
simulating three dimensional rigid body dynamics problems. We
are also interested in understanding the design space for solver
strategies, and to better understand the performance impacts of
the various parameters to the semantics. In terms of meta-theory,
we would like to characterize precisely the class of Zeno systems
handled by the semantics presented here.

References
[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gab-

bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 3, pages 1–168. Clarendon Press, Oxford, 1994.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

11 2012/7/19

Definition 6.1. For any Y 2 FAn
T , q 2 Q, we set

detect-next-event(H ,T, q,Y) =
8

>

<

>

:

CertainlyOneOf(E0) if �0e(Y(T)) for some e 2 E
MaybeOneOf(E0) otherwise

where E0 =
�

e 2 E
�

�

� �e(Ran(Y)) , { f alse}

The result of detect-next-event encodes some information about
the potential event e`+1. In the context of solve-VtE, we interpret
the information to select one of the following cases:

(a) CertainlyOneOf(E0): There is an event in [t`,T) and e`+1 2 E0.
(b) MaybeOneOf(;): There is no event in [t`,T].
(c) MaybeOneOf(E0): If there is an event in [t`,T], then e`+1 2 E0.

Establishing (a) ensures that the interval Y(T) is irrelevant for
the solution enclosure at point T . Establishing (b) means that one
does not have to consider any further events. (c) is a fallback “no
information” result.

Since all the checks used to make the decision and compute E0 are
inclusion isotone, detect-next-event is also inclusion isotone in the
following sense:

Lemma 6.2. From

detect-next-event(H ,T, q,Y1) = CertainlyOneOf(E01)

and Y1 ◆ Y2, it follows that

detect-next-event(H ,T, q,Y2) = CertainlyOneOf(E02)

for some E02 ✓ E01. From

detect-next-event(H ,T, q,Y1) = MaybeOneOf(E01)

and Y1 ◆ Y2, it follows that detect-next-event(H ,T, q,Y2) returns
some E02 ✓ E01.

6.2 Enclosing sequences of events

In this section we describe algorithm solve-VtE which, given a
hybrid IVP, identifies a set of all possible sequences of events on T .
This identification is approximate, often including some sequences
that are not possible. The algorithm then uses the sequences to
produce an enclosure of all solutions of the hybrid IVP over T and
specifically at time T (Definition 6.7).

An essential feature of solve-VtE is that it does not determine
the timing of the events beyond knowing that they happen in T .
The lack of event localization typically leads to a loss of precision
of magnitude comparable to the size of T . We assume that T is
su�ciently small to make such loss of precision acceptable.

Before formally defining solve-VtE, we give an informal overview
of the algorithm in the simplified setting of the bouncing ball
example where there is one type of event and one mode. In this case
solve-VtE constucts a sequence of interval functions Y0,Y1, . . . ,Yk
where each function Yi gives partial information about the state
variables on the subset of T stretching from the location of the i-
th bounce until the location of the i + 1-the bounce. (For the sake
simpler notation, the endpoints are treated as locations of bounces
here.) We discuss several specific situations to clarify the roles of
the functions Yi:

(i) When solve-VtE establishes that there is no bounce on T , the
sequence will have only one element and k = 0.

(ii) When solve-VtE establishes that there is certainly one bounce
on T and the bounce must be located before T , the sequence
will have two elements Y0,Y1. To get a safe enclosure of the

Not last

Not lastLast

Last Not last

Drop Bounce

Drop Bounce

Figure 5: An event tree for a system BBD(g, c, a1 7!d a2) over
a T in which the Drop event occurs and in which any number of
bounce events may happen just before the Drop event. One and
two bounces are expliclity represented in the tree. The remaining
bounces are represented through an implicit loop from the second
Bounce node back to its parent.

solution at some t 2 T , we need to take the union Y0(t)[Y1(t)
unless t = T , in which case Y1(t) is su�cient.

(iii) When solve-VtE establishes that there is either none or one
one bounce on T , the result will di↵er from the above in that
for t = T we have to also take the union of both enclosures.

(iv) When solve-VtE cannot rule out an arbitrary number of
bounces on T , perhaps because T contains a Zeno point or
because the information in Y0 is too coarse, the sequence will
be finite if the last interval function Yk is contained inside Y j
for some j < k. We view this sequence as a representation of
the infinite sequence
Y0, . . . ,Y j, . . . ,Yk,Y j+1, . . . ,Yk,Y j+1, . . . ,Yk, . . .

The functions Yi are computed using solve-Vt. For Y0, the initial
condition is derived from the values at time T . For Yi+1, the initial
condition is derived by applying the reset map to the range of Yi
intersected with the support of the guard. To account for the uncer-
tainty in the initial time, we let Yi+1 be the constant interval function
whose value is the range of the result of solve-Vt. Thus apart from
Y0, all the functions Yi are constant. Moreover, we intersect each
Yi with the domain of the current mode. Such intersection reduces
the growth of the intervals, usually quite significantly.

We stop extending the sequence with further functions when detect-
next-event determines that there is no further event or when a
situation such as the case (iv) above arises.

To distinguish between cases (ii) and (iii) above, solve-VtE keeps
track of whether the result of detect-next-event for each Yi was
MaybeOneOf(E0) or CertainlyOneOf(E0) using a Boolean value
denoted MayBeLast(i), which is false if we are sure that there is at
least one furher event before T .

To account for the general case where we cannot determine the or-
der of di↵erent types of events, we consider a set of event sequences
instead of just one sequence. We use the following notation for se-
quences:

Notation 6.3. Let E⇤ denote the set of finite sequences of elements
of E where the empty sequence is denoted ✏ and vw denotes the
concatenation of sequences v,w 2 E⇤.

For v 2 E⇤ let |v| be the length of v, which is either a natural number
or !. For k  |v|, let v(<k) denote the prefix of v of length k.

We organize a set of event sequences and associated information in
a so-called event tree, such as the one illustrated in Fig. 5.

8 2012/7/19

t

1

�1

x

[�e�t, e�t]

[�et, et]

(a) Best solution with solve-vt.

ae�t

[�e�t, e�t]
[�et, et]

a

x

t

(b) Computation of solve-Vt solution.

t

1

�1

x

[�e�t, e�t]

(c) Best solution with solve-Vt.

Figure 3: Solving the uncertain initial value IVP from Example 4.7. The hatched area [�et, et] is the graph of the naive interval solution. The
smaller area [�e�t, e�t] is the graph of the union of all non-interval solutions X

f ,T ,A. Algorithm solve-Vt obtains this function as a projection
of the function ae�t into the a = 0 plane by the substitution a 2 [�1, 1].

Theorem 4.9 (Convergence of solve-Vt). If f is locally Lipschitz
and X

f ,T ,A is defined on T , then solve-Vt�!(F,T, A, �,m) is defined
for all m 2 N and converges with m! 1 to X

f ,T ,A.

It should be noted that the choice of arithmetic used to implement
solve-Vt is crucial to its convergence. The benefits of introducing
an exact representation for projections over initial values is lost
when e. g. �box is used, and in this case solve-Vt reduces to solve-
vt. To observe a di↵erence between the two solvers one needs to
implement solve-Vt using an arithmetic capable of representing
projections, i. e. variables, exactly.

A straightforward adaptation of Theorems 4.6 and 4.5 applies to
solve-Vt, giving us a total and complete executable semantics for
locally Lipschitz ODE IVP’s with uncertain initial values.

5. Hybrid Enclosures
This section defines a class of hybrid systems and their enclosures.
Our notation broadly follows [18, 19]. Here enclosures are defined
non-constructively, where as the algorithmic semantics (Sections 4,
6 and 7) will do so constructively.

Definition 5.1. A hybrid system is a tuple

H = �

Q, V, �, ⌧, {Dq}q2Q , { f q}q2Q , {(�e, re)}e2E�

consisting of:

• Q — a finite set of modes
• E — a finite set of event types where for each e 2 E we have
• �(e), ⌧(e) 2 Q — the source and target of e, respectively
• {Dq}q2Q with Dq ✓ Rn — a domain for each mode
• { f q}q2Q with f q: Dq ! Rn — a vector field for each mode
• {(�e, re)}e2E — a labeling of events by:

�e: Rn ! B— the guard of e
re: Rn ! Rn — the reset map of e.

In Fig. 4 we give a few examples of hybrid systems, formulated in a
more concise format, which is easy to map to our formal definition
of a hybrid system. These are also some of the examples we tested
our semantics on.

To define enclosures of Zeno systems, we need to allow infinite
executions. To permit executions that go beyond a Zeno point,
we will need transfinite sequences of events indexed by ordinal

numbers [9]. We will use transfinite recursion to define concepts
and transfinite induction to prove properties related to such hybrid
system executions. For an introduction to ordinal numbers, see
e. g. [29].

We will use von Neumann’s definition of ordinal numbers as sets
well-ordered by set membership and sets whose elements are also
subsets of the set, so that:
• 0 = {}, 1 = {0}, 2 = {0, 1} = {0, {0}}, etc.
• ! = {0, 1, 2, . . .}, ! + 1 = {!}, etc.

We write � < ↵ to mean � 2 ↵ and �  ↵ to mean � 2 ↵ + 1.

Ordinals of the form ↵ + 1 are called successor ordinals and non-
zero ordinals that are not of this form are called limit ordinals. For
example, ! is a limit ordinal.

Definition 5.2 (Limit set). Let ↵ be a limit ordinal, let ⌅ be a set
and ⇠: ↵! P(⌅). The limit set of ⇠ at ↵ is defined as follows:

lim
�<↵
⇠(�) =

\

�<↵

[

�<�0<↵
⇠(�0)

Definition 5.3. An enclosure of a hybrid systemH over time T 2 I
is a tuple

⇣ =
�

�, {t(↵)}↵�+1 , {x(↵)}↵� , {e(↵)}↵<� �
consisting of:
• an ordinal number � indexing a (potentially infinite) sequence

of events
• t(↵) 2 T — times of events, satisfying:

T = t(0)  t(1)  . . .  t(� + 1) = T

• e(↵) 2 E — events, satisfying for each ↵ + 1 < �:

�(e(↵ + 1)) = ⌧(e(↵))

where also for every limit ordinal ↵  � it holds:

�(e(↵)) 2 lim
�<↵

�

⌧(e(�))

•
x(↵): [t(↵), t(↵ + 1)]! D⌧(e(↵)) — flow after event ↵, satisfying:

it is a solution of the ODE given by f ⌧(e(↵))

for each time t(↵)  t < t(↵ + 1) none of the guards hold,
i. e. there is no e 2 E with �e

�

x(↵)(t)
�

if ↵+1 < �, the guard for event e(↵+1) holds at time t(↵+1),
i. e.

�e(↵+1)
�

x(↵)(t(↵ + 1))
�

6 2012/7/19

mailto:taha@rice.edu
mailto:aaron.ames@me.gatech.edu?subject=
http://www.effective-modeling.org

