A CPS Approach to Robot Design

Walid Taha, Marcia O'Malley, Robert Cartwright, Aaron Ames
Department of Computer Science and Department of Mechanical and Material Engineering, Rice University School of Mechanical Engineering, Georgia Institute of Technology and CERES, Halmstad University

Rice and HH PI: Prof. Walid Taha

Contact: Walid.Taha@hh.se | aaron.ames@me.gatech.edu
GaTech PI: Prof. Aaron Ames

Objective: To accelerate innovation in robot design

Understanding and Accelerating The Innovation Process

- Innovation is an iterative process
- Physical prototyping can be
- Costly
- Time consuming
- Unreliable
- Explicit analysis limits to simple models
- Today's simulation tools have problems
- Time/effort/ability to model/ simulate

$$
\begin{aligned}
& \text { Bug } \stackrel{\text { Idea }}{\downarrow} \\
& \text { Flaw } \\
& \text { - Prototype } \\
& \text { Recall } \\
& \text { Product }
\end{aligned}
$$

Gaps In the Process of Modeling and Simulation

Research Issues

- Formalizing modeling processes
- Mapping from rigid-body model to mathematical equations
Mapping from equations to an executable form of equations (DAE or ODE)

- Modeling and simulating hybrid (continuous/discrete) models
- Characterizing well-behaved executable class of mathematical equation
- Model validation

Validated Enclosures for Simulating Hybrid Systems

- Validated method produce enclosures guaranteed to contain real answer
- Challenges (and our approach): 1) Enclosing solutions to non-linear systems (Picard operator), 2) Dealing with enclosures of initial systems (Picard operator), 2) Dealing with enclosures of initial
values (new generalization of Picard), 3) Dealing with events (new methods), 4) Dealing with Zeno behavior (new methods)

Dealing with Enclosed Initial Values \& Zeno Behavior

- Right: Enclosed (or "uncertain") initial solving a higher
dimensional problem

- Above: Event tree used to compute enclosures for Zeno systems in finite time

- Left: Actual enclosure computed for three Zeno systems. In all cases, bette results are attained by adding explicit assertions into the model

Prototype Test Bed: Acumen

- Core language hybrid (mixed continuous/discrete) modeling
- Support for equations and dynamic object creation/destruction
- Support for automatic 2D plotting and 3D visualization

New Course: Introduction to Cyber-Physical System

- Emphasis on themes:
- The need for new expertise
- The need for hybrid models
- Energy as a pervasive concern

Project: Build a Ping Pong robot

- Using 3D visualization
- Students develop CPS players
- Realism gradually increased
- Course Content
- Big picture overview of field
- Modeling physical systems
- Modeling computing systems
- Principles of control theory
- Hybrid systems
- Game theory
- Flipped classroom format

Taught five times at Halmstad

Industrial Collaborators

- The MathWorks: Interest in educational aspects of project
Volvo Technology (VTEC): Partner in Swedish VINOVA Foundation project focusing on Advanced Driver Assistance Systems (ADAS). Acumen is being used for developing models of vehicles, ADAS

Acknowledgement

The research team acknowledges the support of the National Science Foundation through grants NSF-CPS-1136099/1136104. Enclosure work is joint with Dr. Michal Konecny, Aston University

To Probe Further

- Information about the project as well as the activities and publications of the group can be found at the Effective Modeling Group web-page (www.effective-modeling.org)
The Acumen language testbed is distributed under BSD license, and can be downloaded from the - language web-page (wwww.acumen-language.org)

