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Control-Oriented Wireless Networking: PRK-Based Resource Allocation for Predictable Communication
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Cyber-Physical \ehicular Platoon Control: Networked Consensus and Mean-Variance Control
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Fundamental Features
1. The algorithm is convergent, and with post-iterate averaging it
achieves asymptotically the Cramer-Rao lower bound.
It can deal with communication latency, packet erasure, noises.
. It remains convergent under network topology switching, Vehicle § Vehicle 3 Vehicle 5
correlated noise, and asynchronous control updating.
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4. It achieves fast team cqordlnatlon and .formatlon. Vehicle 4 Vehicle 4 Communications add new information, improve convergence, ) ] ]
5. Itrestores team formatlon. after large d.lsturbances.. _ Sensor-Based Adding Communication Links and enhance robustness. Platoon formation errors are only be observed with white noise
6. It restores platoon formation after adding or removing vehicles. Information Topology to the Information Topology reduced faster when more communication (cyber) resources
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