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The goal of this project is to study the fundamental principles
(dynamics and control) in using clinical techniques for accurately
guiding agglomerations of magnetic nanoparticles in targeted
drug delivery. The innovative technology component of this
study is the dual use of clinical magnetic technology as an
imaging modality for both diagnostics and feedback control
signal purposes and as a propulsion modality that generates the
control forces to accurately guide agglomerations of magnetic
nanoparticles.
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CO I CI U S | O N S Here we suggest a method for using magnetic particles in drug delivery applications. In order to elucidate the interaction of magnetic particles, computational models were
developed. It is seen that these models are effective in describing the experimental observations. Both experiments and numerical simulations verify that aggregates of magnetic particles move faster compared
to single particles. Finally, in vitro studies are designed to be done in order to prove the ability of controlling magnetic particles in biological systems. NSRSV EEY"Z T ,
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