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Residential buildings account for approximately 30% of the electricity consumption at the national
level, and for about 20% of the total U.S. primary energy use. Up to 50% of this vast amount of energy
is expended on space cooling [1, 2]. Heating, ventilation and air conditioning (HVAC) systems must
maintain occupant comfort within reasonable limits and at a reasonable cost. This should be accomplished
in the presence of fluctuations in weather, changes in energy prices, and variations in human occupancy,
activity and preferences. Surprisingly, given the challenging nature of their task, most residential HVAC
systems still rely on rather rudimentary control strategies (e.g., on/off control coupled with a time-of-day
thermostat setpoint schedule [3]).

Figure 1: Data collected by Pecan Street, Inc. (a smart grid demonstration project headquartered at The University of Texas) from
the Mueller neighborhood in Austin, TX provide an unprecedentedly detailed perspective on residential energy consumption. The
data shown here (measured on July 31, 2012 in a typical Mueller home; courtesy of Pecan Street, Inc.) indicate that electricity
consumption – note that the contribution of HVAC is not shown – depends strongly on human behavior and varies significantly
during the day.

This operating mode (coupled with other energy-intensive human activities – using washers, dryers,
water heaters, etc., as shown in Figure 1) gives rise to large daily fluctuations in residential energy use,
which are most evident in a late-afternoon and evening peak in energy demand. Extended over large
residential neighborhoods, this phehomenon has a significant effect on the operation of the grid, as well
as on electricity prices, particularly in the hot weather states of the Southern U.S. (Figure 2).

Grid operators address increased energy demand by using additional, peak-time, generating facilities.
Such “peaking plants” are typically designed to be capital-efficient rather than energy-efficient, and are
thus more expensive to operate and have a higher environmental impact than the base-load generating
facilities.

Fluctuations in residential energy consumption can be significantly diminished by adopting a proactive
energy management approach, which entails forecasting energy demand and optimally scheduling the
operation of generation (and storage) systems to meet this demand over a future time horizon [4, 5].
Realizing this possibility – and defining the energy-smart neighborhood of the future – requires systematic
research efforts on the cybernetic, software component of managing energy in the physical environment
of residential buildings. Ongoing research at The University of Texas at Austin has delineated several
directions which present both fundamental challenges and important practical applications:

Predicting energy-relevant human behavior: Neighborhood-level monitoring projects (including
Pecan Street, Inc. – see Figure 1) are producing highly granular data on energy-related human activity.
The multi-scale nature of the phenomena captured in these data (owing, e.g., to the superposition of hourly,
daily and seasonal variations), as well as the sheer volume of the data sets, constitute a substantial barrier
in the development of reliable models for analyzing and predicting residential activity. New, computation-
ally efficient methods and mechanisms are urgently needed, that would allow for mining these data, and
for forecasting energy-relevant human activity and preferences such as (variations in) HVAC temperature
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Figure 2: (a) Electricity demand and generation exhibit significant variations during the day. (b) Unusually high (105-110◦F/40.5-
43.3◦C) mid-afternoon temperatures on August 24, 2011 considerably increased AC energy use, causing a large peak in the Texas
grid load. As a consequence, spot electricity prices (the prices charged to large consumers) increased by two orders of magnitude.
Data source: Electric Reliability Council of Texas (ERCOT).

setpoints, the operation of appliances (including electric vehicle charging) as well as emerging behaviors
(e.g., working from home, home schooling). Recent analyses (Figure 3) suggest an increased variability of
energy-relevant human preferences when overall energy demand is high. Further work is thus required to
understand the potential influence of information streams (e.g., real-time energy prices, real-time billing)
on human behavior. In a broader context, this information should serve as the basis for structuring the
energy market in a way that encourages producers and consumers to engage in actions and behaviors that
lead to reducing the peak energy demand.

Optimization-oriented building models: Time-shifting and leveling peak residential energy consump-
tion is vitally dependent on predictions of energy use based on human behavioral models (as described
above), weather and price forecasts. In turn, this requires accurate mathematical models of the tempera-
ture dynamics of a home. Currently, most modeling and simulation tools use detailed models derived from
the fundamental partial-differential equations describing material and energy balances in a building. Such
models are well-suited for design purposes, but are too large (and, typically, in an unwieldy “black-box”
format) for use in energy optimization calculations that are performed on-line.

Thus, further progress in optimal energy management in residential buildings depends on the avail-
ability on accurate low-order models of the building dynamics, which can be solved rapidly and reliably
in real-time [6]. Further, such models should be easy to derive and portable, requiring the estimation of a
minimal number of parameters from experimental data.

Figure 3: HVAC energy consumption in 88 homes monitored by Pecan Street, Inc. as a function of outside temperature. For
each temperature value, an individual home is represented as a point on the graph. Note the (intuitive) increase in energy use in
hotter weather. The increased “spread” of the points at higher outside temperatures is suggestive of a strong variability in human
preference - in this case, related to AC temperature setpoints [7]. Data collected July 2012 - June 2013, provided courtesy of Pecan
Street.
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Cooperative strategies for peak load reduction and reallocation: Energy storage is an effective means
for reassigning high grid demand from residential buildings to off-peak times. Of particular interest is the
use of cost-effective home- or community-level thermal energy storage (TES), either in the form of sensi-
ble heat (e.g., chilled water) or latent heat (using ice or other phase-change materials) [8]. Managing TES
systems requires devising optimal operating policies, which include decisions on the charge and discharge
times as a function of (forecasts of) occupancy, weather and energy prices. Recent results [9] show that
optimally scheduled home-level TES systems have excellent potential for peak-load reduction via energy
storage and precooling of the structural elements of the buildings in anticipation of the afternoon peak.
Intuitively, implementing this approach in every home in a neighborhood would simply translate the peak
energy consumption to a different time of the day. A leveling effect can only be achieved via cooperation
between the control systems of individual homes. Thus, future work should target the development of
cooperative control strategies that enforce load equalization during the day at the community level. Spe-
cific research areas include achieving load-leveling with decentralized controllers that require minimal
communication and coordination, minimizing computational requirements, and ensuring the stability of
the ensemble of homes and controllers. The operational integration of local generation (e.g., combined
heat and power, solar panels, fuel cells) and the influence of human behavior on the design, operation and
control of such microgrids is also of elevated interest.

Education and community outreach: Modern society has a symbiotic relationship with energy, in all
of its forms. Awareness of the nexus of human behavior, energy and the environment should be instilled
in the young generations at an early age. Educational and outreach initiatives aimed at contextualizing
energy use (particularly at home) and encouraging responsible stewardship of energy resources by the
youngest members of our society should thus be an integral part of our research efforts.

Optimal management of energy use in residential buildings is therefore a rich topic for fundamental
research and provides a plethora of exciting practical applications. Research in this field is highly interdis-
ciplinary, as it requires new developments in the cybernetic realm, including data mining, mathematical
modeling, optimization, computation and control, as well as in the physical domain, where new means for
understanding and modulating energy generation, consumption and storage must be developed.
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