A Logical Framework for Self-Optimizing Networked Cyber-Physical Systems

Mark-Oliver Stehr, Minyoung Kim, Carolyn Talcott

http://ncps.csl.sri.com

(Control)

An Application Framework for Networked CPS

- Based on new loosely-coupled distributed computing model: Partially Ordered Knowledge Sharing
- Inspired by our earlier work on delay-/disruption-tolerant networking (DTN)
- Minimal assumptions on network connectivity (can be very unreliable)
- Works with dynamic topologies, network partitions, and mobile nodes
- Designed for heterogeneous networking technologies and heterogeneous nodes
- Partial order allows the network to replace obsolete or subsumed knowledge
- Global consistency is not enforced (impossible in challenging environments)
- Avoids strong non-implementable primitives, e.g. transactions
- Locally each cyber-node uses an event-based model with local time
- Events are local, but knowledge can be shared and cached in the network
- Each cyber-node can have attached cyber-physical devices
- Framework supports
- model-based simulation
- probabilistic analysis algorithms
- real-world deployment/execution
- visualization of simulated NCPS

Networked Quadricopter Testbed

- Quadricopters are a very interesting class of cyber-physical devices (equipped with many sensors and actuators including cameras)
- Networked quadricopters will allow us to perform collaborative tasks (e.g. formation flying, distributed sensing, monitoring)
- Quadricopters (and their components) become devices in the cyber-application framework
- Currently controlled from a network of netbooks on the ground (each node can control one or multiple quadricopters)
- Can be equipped with gumstix SBC and additional devices (e.g. GPS, digital compass) for more autonomy
- Currently experimenting with vision-based localization for indoor-usage (see pictures below)

Four quadricopters before the launch Four quadricopters controlled by the cyber-application framework

Vision-based localization experiment (utilizing Kinect 3D camera)

Sharing K among Cyber Hosts

1) Load Opt4J modules

and configuration file 2) Initialize modules

Run modules to configure

migration period

Cyber Engine at Cyber Host2

Sharing K among Cyber Nodes

000 000

Cyber Node (Thread)

sub-population

Cyber Engine at Cyber Host1

Sharing K among Cyber Nodes

K: Knowledge which includes dominant individuals

Cyber Node (Thread)

Island

sub-population

Distributed Logic for Declarative Control

K′≥

- Truly distributed logical framework with explicit proof objects
- Cyber-predicates enable interaction with the physical world
- Facts and goals treated on an equal footing
- Covers entire spectrum between autonomy and cooperation
- Tested with abstract mobility model and Stage multi-robot simulator
- Soundness, Completeness, and Termination Conditions

Parallel and Distributed Optimization

- Distributed and parallel meta-heuristic framework combining
- an existing mature sequential optimization framework (Opt4J) with
- a loosely coupled distributed island model for scalable parallelization
- The parallelism is transparently provided by the cyber-framework
- cyber-nodes cooperate by emitting waves of knowledge, which interfere until all local solutions asynchronously converge to a global solution
- Optimization fits well into the partially ordered knowledge-sharing model
- Replacement order is defined by either
 - single objective function (solution fitness) or
- multiple objective functions (Pareto optimality)
- Algorithm: population based meta-heuristic optimizer utilizing the island model
- Case study: design space exploration of an embedded multimedia system
- Key features: scalability and robustness in the optimization problem
- Optimizer performance is studied on Internet-wide testbed (Planet Lab)
- Possible next steps:
- Combining optimization and declarative control

