

A MULTI-RESOLUTION APPROACH FOR DISCOVERY AND 3D MODELING OF ARCHAEOLOGICAL SITES USING SATELLITE IMAGERY AND A UAV-BORNE CAMERA

NSF 1330008 CPS, PI: VENKATESH SALIGRAMA (SRV@BU.EDU), Co-PI David Castanon, Co-PI Mac Schwager College of Engineering, BOSTON UNIVERSITY

Introduction

- Motivation: Team of archaeologists at BU who are interested in studying burial mound structures from the ancient Lydian civilizations currently located in Turkish countryside
- **Problem**: Some burial mound locations ar known, but the country side is too vast to sen specialized teams of workers to inspect eac potential future dig site
- Current Technology: Coarse satellite imagery
- **Proposed Solution**: Three stage method for discovering new sites using autonomous aeria vehicle submitted to ACC 2016 [1]:
 - I: Utilize low resolution satellite im agery coupled with machine learning a gorithms to perform a coarse search an identify tentative locations of interest
 - II: Plan an optimal trajectory using previous weights to inspect closely promisin

objects subject to fuel constraints

- III: Generate 3-D reconstructions of the area of interest in order to finally classifi-

I – LEARNING

- Standard binary learning problem
- Training examples: $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$ and $y_i \in \{0, 1\}$
- Learn a classifer: $f = sign(w^T x)$
- $\hat{w} = \arg\max_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i))$
- Probability estimate for location $i: \hat{p}(x_i) = \frac{1}{1 + \exp(-\hat{w}^T x_i)}$
- Entropy as reward for location $i: H(\hat{p}(x_i)) = -\hat{p}(x_i) \log(\hat{p}(x_i)) (1 \hat{p}(x_i)) \log(1 \hat{p}(x_i))$

II – PATH PLANNING

- Orienteering problem:
 - G = (V, E) where $V = \{v_1, \dots, v_n\}$ and $E = \{(v_i, v_j), i < j\}$; Start and end node: v_1
 - Node reward: $r_i \equiv H(\hat{p}(x_i))$; Expanded edge cost: c_{ij} ; Budget on cost: B
 - **Objective**: Maximize the total rewards of the nodes being visited without exceeding the cost budget

II – PATH PLANNING (CONT)

- New algorithm:
 - Step 1): Grow a tree to visit nodes of high marginal reward within the budget
 - Step 2): Run Lin-Kernighan-Helsgaun algorithm to find a tour on the nodes of the tree
 - Step 3): Exploit leftover budget and insert more nodes into the tour

III – MULTIPLE VIEW 3-D RECONSTRUCTION

- Input: Images I_k , k = 1, ..., m taken of the same $\mathbf{P}^i \in \mathbb{R}^3$, i = 1, ..., n world features.
 - Pixel position of i^{th} world feature in camera k (\mathbf{p}_k^i) are given by the pinhole camera model: $\lambda_k^i \begin{bmatrix} \mathbf{p}_k^i \\ 1 \end{bmatrix} = \mathbf{K}\mathbf{P}_k^i$
- **Objective**: Estimate the relative transformations ($\mathbf{R}_{k1}, \mathbf{t}_k$) between the k^{th} camera frame and the reference frame (camera 1) as well as the unknown feature depths (λ_1^i) such that the following reprojection error from the estimated 3D points is minimized,

- **Solution**: Utilize Levenberg—Marquardt algorithm with accurate initialization from two-view epipolar geometry and least squares estimation given the image features that were extracted and matched among the images.
- Results: Comparison of 3D reconstruction of two different objects with similar low-resolution data
 - Iterative Closest Point algorithm computed mean distances from the ground truth data to the real model ($\sim 0.08m$) and the flat texture ($\sim 0.18m$)

REFERENCES

[1] H. Ding, E. Cristofalo, J. Wang, D. Castañon, E. Montijano, V. Saligrama, and M. Schwager, "A multi-resolution approach for discovery and 3d modeling of archaeological sites using satellite imagery and a uav-borne camera," in 2016 American Control Conference (ACC), Submitted Sept. 2015.