
A New Computation Task Model for
Cyber-Physical Systems

Kang G. Shin
Real-Time Computing Laboratory

EECS/CSE, University of Michigan@Ann Arbor

This is joint work with Jinkyu Lee

▪  Feedback control with periodic computation tasks

How does cyber control physical?

Source: http://aar.faculty.asu.edu/research/mosart/mosart.html

sensor

actuator

control law
computation

A/D

reference input

D/A

▪  How to guarantee stability?

How does cyber control physical?

Stability

No deadline miss

Incremental
cost

∞

deadline completion
time

▪  Is “no deadline miss” a must?

How does cyber control physical?

Q1. Is “no deadline miss” always and
 absolutely required for every task?

Q2. What’s the price we pay to meet the
“no deadline miss” requirement?

How does cyber control physical?

Q1. Is “no deadline miss” always and absolutely
 required for every task?

No. It depends on tasks and situations.

How does cyber control physical?

Q2. What’s the price we pay to meet the
“no deadline miss” requirement?

Efficiency: we can accommodate more
tasks if we relax the requirements.

New CPS task model

Stability Efficiency

R1. Capture tolerable job deadline misses
without system instability

R2. Capture the control cost associated with
job deadline misses

R3. Express a number of job deadline misses with
 finite states, capturing the coupling between

cyber and physical subsystems

New CPS task model

Incremental
cost

∞

deadline completion
time

Incremental
cost

∞

d completion
time

2d 3d

Incremental
cost

∞

d completion
time

2d 3d

▪  What’s new here?
▫  Existing models cannot capture the control cost

associated with job deadline misses
▪  Change sampling frequency [9,17,18,26,27]

▪  Deadline-miss-tolerance models [11,12,13,14,15,16]
▫  Generalization of existing models

New CPS task model

Fresh input

Old input

Scheduling and analysis

Stability

Efficiency

Stability

•  Scheduling for no
deadline miss

•  Scheduling for minimizing
 incremental cost without
any deadline miss

More complex problem!

•  Schedulability analysis •  Schedulability and cost
 analysis

▪  Job state ℓ: the number of consecutive deadline
misses

▪  Job state ℓ is a key parameter that determines both
stability and efficiency.
▫  ℓ: cyber subsystem state (CSS)

Scheduling

ℓ =0 1 2

Scheduling

Traditional model New model

Task-level fixed-priority CSS-level fixed-priority

e.g., Task 1 > Task 2 e.g., Task 1 (ℓ=2) > Task 2 (ℓ=1)
 > Task 1 (ℓ=1) > Task 2 (ℓ=0)
 > Task 1 (ℓ=0)

1.  How to guarantee stability and efficiency
with a given priority?
2. How to find the best priority in terms of
stability and efficiency?

Analysis

Priority assignment

Analysis

Each task Each task, each CSS

•  Worst-case release
 patterns of other tasks

•  Worst-case release patterns of
other tasks with different CSSes

Deadline miss or not Deadline miss or not +
Cost upper-bound

▪  An upper-bound of the amount of execution of task
i’s jobs with priority strictly higher than p in an
interval of length l such that the interval starts at
one of the release times of task i’s jobs.

Analysis

Wi (l,pi
0) = 8 * Ci

l

i (0) i (1) i (2) i (3) i (0) i (1) i (2) i (3) i (0) i (1) i (2) i (3)

▪  Synchronous release is the worst case.
▫  Higher-priority execution upper-bounded by

▪  Response-time analysis

▪  Testing order: Task i(0) -> Task i(1) -> Task i(2) …
▫  If Task i(x) is schedulable, Tasks i(y>x) are not feasible,

and incremental cost is no larger than Task i(x)’s cost.

Analysis

▪  Reduce pessimism by observing that all worst-case
situations cannot happen coincidently.

▪  Details will be available upon request.

Improved analysis

▪  The number of combinations: n!
▫  n: the number of all CSSes in a task set

▪  Addressing time-complexity
▫  The lowest -> the highest
▫  Observation: Task i(x)’s priority assignment does not

affect Task i(y>x)’s response time
▫  Greedy approach: Try a task with the smallest

incremental cost difference between Task i(x) and Task
i(x+1).

▫  Linear time-complexity

Priority assignment

▪  Randomly generated 10,000 task sets based on [29]
▪  Ours(m): allowing at most m consecutive deadline miss,

applying CSS-level fixed-priority scheduling with our priority
assignment method

▪  Compared to the classical task model, our model
yields more schedulable task sets.

Evaluation

Task model # of task sets proven stable
Ours(0) 1906
Ours(1) 2892
Ours(2) 3201
Ours(3) 3336
Ours(4) 3397

Classical task model=

▪  Elas(m): disallowing any deadline miss, but period
extension by (m+1), applying deadline monotonic
scheduling

▪  Compared to frequency change, our model yields
less control costs.

Evaluation

m Control cost: Ours(m) / Elas(m)
0 1.0
1 0.63
2 0.59
3 0.49
4 0.46

Conclusion

Need of a new CPS task model

Development of the model

Addressing both stability and efficiency

Algorithm, analysis and priority assignment

