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How does cyber control physical?
» Feedback control with periodic computation tasks
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How does cyber control physical?

 How to guarantee stability?
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How does cyber control physical?

= |s “no deadline miss” a must?

Q1. Is “no deadline miss” always and
absolutely required for every task?

Q2. What's the price we pay to meet the
“no deadline miss” requirement?



How does cyber control physical?

Q1. Is “no deadline miss” always and absolutely
required for every task?

No. It depends on tasks and situations.
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(a) Even, almost straight road, e.g., highway (b) Unpaved, winding road, e.g., off-road



How does cyber control physical?

Q2. What's the price we pay to meet the
“no deadline miss” requirement?

Efficiency. we can accommodate more
tasks if we relax the requirements.



New CPS task model

Stability + Efficiency

R1. Capture tolerable job deadline misses
without system instability

R2. Capture the control cost associated with
job deadline misses

R3. Express a number of job deadline misses with
finite states, capturing the coupling between
cyber and physical subsystems



New CPS task model

Incremental Incremental
cost cost
o0 | 00 : : —
deadline completion d 2d 3d completion
time time



New CPS task model
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New CPS task model

 What's new here?
= Existing models cannot capture the control cost
associated with job deadline misses
= Change sampling frequency [9,17,18,26,27]
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Old input
» Deadline-miss-tolerance models [11,12,13,14,15,16]

= (Generalization of existing models
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Scheduling and analysis

Stability Stability
Efficiency
* Scheduling for no « Scheduling for minimizing
deadline miss iIncremental cost without
any deadline miss
« Schedulability analysis « Schedulability and cost
analysis

More complex problem!
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Scheduling

= Job state £: the number of consecutive deadline
misses
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= Job state { is a key parameter that determines both

stability and efficiency.
= {: cyber subsystem state (CSS)
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Scheduling

Traditional model ' New model
Task-level fixed-priority CSS-level fixed-priority
e.g., Task 1 > Task 2 e.g., Task 1 (1=2) > Task 2 (=1)

> Task 1 ({=1) > Task 2 ({=0)
> Task 1 ({=0)

1. How to guarantee stability and efficiency
with a given priority? Analysis
2. How to find the best priority in terms of

stability and efficiency? Priority assignment
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Analysis

Each task Each task, each CSS

» Deadline miss or not +

Deadline miss or not Cost upper-bound

 Worst-case release * Worst-case release patterns of
patterns of other tasks other tasks with different CSSes
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Analysis

An upper-bound of the amount of execution of task
I's jobs with priority strictly higher than p in an
interval of length / such that the interval starts at
one of the release times of task i's jobs.
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Analysis

= Synchronous release is the worst case.

= Higher-priority execution upper-bounded by Z W;(l,p).

T, €T

» Response-time analvsis
R —Cr+ ) Wi(R",pp).

T €ET—{T1L}

» Testing order: Task i(0) -> Task i(1) -> Task i(2) ...

= |f Task i(x) is schedulable, Tasks i(y>x) are not feasible,

and incremental cost is no larger than Task i(x)’s cost.
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Improved analysis

» Reduce pessimism by observing that all worst-case
situations cannot happen coincidently.

= Details will be available upon request.
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= The number of combinations: n!

Priority assignment

o n: the number of all CSSes in a task set

= Addressing time-complexity
The lowest -> the highest
Observation: Task i(x)’s priority
affect Task i(y>x)’s response tir

Greedy approach: Try a task w «
iIncremental cost difference bet

a

I(X+1).
Linear time-complexity

Algorithm 2 Priority assignment for CFP

I: Peurr < 1, 1.€., we determine the lowest priority first.
2 pb — Pmaz, VJf where 7; € T and 1 < £ < m;.
3: while there exists Jf such that pf = Pmaz do

4:
5:

6

o 2

11:
12:
13:
14:
15:
16:
17:

18:
19:

<

J — 0.
for V7; € 7 such that pr = Pmaz do
/ « the smallest ¢ such that p = pras-
T — JU{JYifl < m;+ 1. )
Calculate an upper-bound of the response time of .],-‘
in case it has the priority of pey, using Theorem 2.
if the upper-bound is smaller than or equal to 7 then
Pt = Peurrs V< 0 < my + 1.
Exit for-loop and go to Step 19.
end if
end for
if 7 = () then
return INSTABLE
else
Find J/ € J which has the smallest I/ ™" — I!, and
then p§ “— Deurr-
end if
])('Ul'l' — ])(‘HI'I' + 1'

20: end while
21: return STABLE with {p‘}.
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Evaluation

 Randomly generated 10,000 task sets based on [29]

= Qurs(m): allowing at most m consecutive deadline miss,
applying CSS-level fixed-priority scheduling with our priority
assignment method

Task model # of task sets proven stable

Classical task model= Ours(0) 1906
Ours(1) 2892
Ours(2) 3201
Ours(3) 3336
Ours(4) 3397

= Compared to the classical task model, our model

yields more schedulable task sets.
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Evaluation

» Elas(m): disallowing any deadline miss, but period
extension by (m+1), applying deadline monotonic
scheduling

“ Control cost: Ours(m) / Elas(m)

0 1.0
1 0.63
2 0.59
3 0.49
4 0.46

= Compared to frequency change, our model yields
less control costs.
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Conclusion

Need of a new CPS task model

Development of the model

Addressing both stability and efficiency

Algorithm, analysis and priority assignment
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