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▪  Feedback control with periodic computation tasks 

How does cyber control physical? 

Source: http://aar.faculty.asu.edu/research/mosart/mosart.html 
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▪  How to guarantee stability? 

How does cyber control physical? 
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▪  Is “no deadline miss” a must?  

How does cyber control physical? 

Q1. Is “no deadline miss” always and 
        absolutely required for every task? 

Q2. What’s the price we pay to meet the  
“no deadline miss” requirement? 



How does cyber control physical? 

Q1. Is “no deadline miss” always and absolutely 
 required for every task? 

No. It depends on tasks and situations. 
 



How does cyber control physical? 

Q2. What’s the price we pay to meet the  
“no deadline miss” requirement? 

Efficiency: we can accommodate more  
tasks if we relax the requirements.  



New CPS task model 

Stability Efficiency 

R1. Capture tolerable job deadline misses  
without system instability 

R2. Capture the control cost associated with  
job deadline misses 

R3. Express a number of job deadline misses with  
   finite states, capturing the coupling between 

cyber and physical subsystems 



New CPS task model 
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▪  What’s new here? 
▫  Existing models cannot capture the control cost 

associated with job deadline misses 
▪  Change sampling frequency [9,17,18,26,27] 

▪  Deadline-miss-tolerance models [11,12,13,14,15,16] 
▫  Generalization of existing models 

New CPS task model 

Fresh input 

Old input 



Scheduling and analysis 

Stability 

Efficiency 

Stability 

•  Scheduling for no 
deadline miss 

•  Scheduling for minimizing
 incremental cost without 
any deadline miss 

More complex problem! 

•  Schedulability analysis •  Schedulability and cost  
    analysis 



▪  Job state ℓ: the number of consecutive deadline 
misses 

▪  Job state ℓ is a key parameter that determines both 
stability and efficiency. 
▫  ℓ: cyber subsystem state (CSS) 

Scheduling 

ℓ  =0 1       2 



Scheduling 

Traditional model New model 

Task-level fixed-priority  CSS-level fixed-priority 

e.g., Task 1 > Task 2 e.g., Task 1 (ℓ=2) > Task 2 (ℓ=1) 
     > Task 1 (ℓ=1) > Task 2 (ℓ=0) 
     > Task 1 (ℓ=0) 

1.  How to guarantee stability and efficiency  
with a given priority? 
2. How to find the best priority in terms of  
stability and efficiency? 

Analysis 

Priority assignment 



Analysis 

Each task Each task, each CSS 

•  Worst-case release  
    patterns of other tasks 

•  Worst-case release patterns of 
other tasks with different CSSes 

Deadline miss or not Deadline miss or not + 
Cost upper-bound 



▪  An upper-bound of the amount of execution of task 
i’s jobs with priority strictly higher than p in an 
interval of length l such that the interval starts at 
one of the release times of task i’s jobs. 

Analysis 

Wi (l,pi
0) = 8 * Ci 

l 
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▪  Synchronous release is the worst case. 
▫  Higher-priority execution upper-bounded by 

▪  Response-time analysis 

▪  Testing order: Task i(0) -> Task i(1) -> Task i(2) … 
▫  If Task i(x) is schedulable, Tasks i(y>x) are not feasible, 

and incremental cost is no larger than Task i(x)’s cost. 

Analysis 



▪  Reduce pessimism by observing that all worst-case 
situations cannot happen coincidently. 

▪  Details will be available upon request. 

Improved analysis 



▪  The number of combinations: n!  
▫  n: the number of all CSSes in a task set 

▪  Addressing time-complexity 
▫  The lowest -> the highest 
▫  Observation: Task i(x)’s priority assignment does not 

affect Task i(y>x)’s response time 
▫  Greedy approach: Try a task with the smallest 

incremental cost difference between Task i(x) and Task 
i(x+1). 

▫  Linear time-complexity 

Priority assignment 



▪  Randomly generated 10,000 task sets based on [29] 
▪  Ours(m): allowing at most m consecutive deadline miss, 

applying CSS-level fixed-priority scheduling with our priority 
assignment method 

▪  Compared to the classical task model, our model 
yields more schedulable task sets. 

Evaluation 

Task model # of task sets proven stable 
Ours(0) 1906 
Ours(1) 2892 
Ours(2) 3201 
Ours(3) 3336 
Ours(4) 3397 

Classical task model= 



▪  Elas(m): disallowing any deadline miss, but period 
extension by (m+1), applying deadline monotonic 
scheduling 

▪  Compared to frequency change, our model yields 
less control costs. 

Evaluation 

m Control cost: Ours(m) / Elas(m) 
0 1.0 
1 0.63 
2 0.59 
3 0.49 
4 0.46 



Conclusion 

Need of a new CPS task model 

Development of the model 

Addressing both stability and efficiency 

Algorithm, analysis and priority assignment 


