A New Computation Task Model for
Cyber-Physical Systems

Kang G. Shin

Real-Time Computing Laboratory
EECS/CSE, University of Michigan@Ann Arbor

This is joint work with Jinkyu Lee

How does cyber control physical?
» Feedback control with periodic computation tasks

reference input

L A/D control law D/A
A > computation

JOSuas

Jojenjoe

How does cyber control physical?

 How to guarantee stability?

Incremental
cost
No deadline miss o

Stability

deadline completion
time

How does cyber control physical?

= |s “no deadline miss” a must?

Q1. Is “no deadline miss” always and
absolutely required for every task?

Q2. What's the price we pay to meet the
“no deadline miss” requirement?

How does cyber control physical?

Q1. Is “no deadline miss” always and absolutely
required for every task?

No. It depends on tasks and situations.

Target trajectory Actual path by periodic
\ steering wheel controls
4) :
= m.’;"a o o Mo ,
vy . oy &Eooslo o 7~ —
e e R e M M M = s o =~ @aca e | &
o o oo ®a—n So-agin gy TreA| e o0 iy

(a) Even, almost straight road, e.g., highway (b) Unpaved, winding road, e.g., off-road

How does cyber control physical?

Q2. What's the price we pay to meet the
“no deadline miss” requirement?

Efficiency. we can accommodate more
tasks if we relax the requirements.

New CPS task model

Stability + Efficiency

R1. Capture tolerable job deadline misses
without system instability

R2. Capture the control cost associated with
job deadline misses

R3. Express a number of job deadline misses with
finite states, capturing the coupling between
cyber and physical subsystems

New CPS task model

Incremental Incremental
cost cost
o0 | 00 : : —
deadline completion d 2d 3d completion
time time

New CPS task model

Update 1 Update 2 Update 3 Update 4 Update 5 Update 6
Compute . Compute f Compute . Compute 1 Compute f Compute t
I »l »l »l »l »l »l
| 1 =1 "1 1 1 =1
0 T, 2T, 3T, 47, 5T, 6T,

i) i) i) i) i) i)

Input data 1 Input data 2 Input data 3 Input data 4 Input data 5 Input data 6 Input data 7

o0

No update Update 2 No update Update 4 No update Update 6
)) X)
Compute ‘ f Compute t Compute f
| but not finished | Compute B¥ but not finished Compute B¥put not finished Compute =
I =1 1 1 =1 | |
0 T; 2T; 3T; 4T, 5T; 6T,

)) i) i) i) i) i)

Input data 1 Input data 2 Input data 3 Input data 4 Input data 5 Input data 6 Input data 7

No update No update Update 3 No update No update Update 6
X) X) (X) X)
Compute Compute Compute Compute
but not finished but not finished Compute but not finished but not finished Compute
I »l »l »l »l »l »l
I > | Bl | -1 1
0 T, 2T, 3T, 4T; ST, 6T,

i) i i) i) i) i) i)

Input data 1 Input data 2 Input data 3 Input data 4 Input data 5 Input data 6 Input data 7

Incremental

cost

A

»

2d

3d cémpletion
time

New CPS task model

 What's new here?
= Existing models cannot capture the control cost
associated with job deadline misses
= Change sampling frequency [9,17,18,26,27]

/

No update No update ! Update 3 \ No update No update Update 6
(X) X) l X) X)
Compute Compute } t fompute Compute c
but not finished but not finished Computg byt not finished but not finished ompute
e B e B B B |
0 T; ,’ T \\ 3T, 4T, 5T, 6T;
i) A £ A S) i) i) i)
Input data 1 Input data 2 Input data 3,' Input data 4 Input data 5 Input data 6 Input data 7
- , -y
Fresh input *~._-" "
No update No update / Update 1 \ No update No update Update 4
X) X) | f I X) X) t
Compute \ / Compute
L l \ »l , [l l »|
TSNS 1 I Vambs? | | =1
l’ 0 N\ T; 2T, 3T; 4T, 5T; 6T,
4) 10 i) i) i) i) i)
|]
\Input data 1 7 Input data 2 Input data 3 Input data 4 Input data 5 Input data 6 Input data 7
_ -

Old input
» Deadline-miss-tolerance models [11,12,13,14,15,16]

= (Generalization of existing models
10

Scheduling and analysis

Stability Stability
Efficiency
* Scheduling for no « Scheduling for minimizing
deadline miss iIncremental cost without
any deadline miss
« Schedulability analysis « Schedulability and cost
analysis

More complex problem!

11

Scheduling

= Job state £: the number of consecutive deadline
misses

No update No update Update 3 No update No update Update 6
X) X) X)
Compute Compute Compute Compute
but not finished but not finished Compute but not finished but not finished Compute
| »l »l »l »l »l »l
I T T Rl] T !
0 T; 2T, 3T; 4T, 5T, 6T,
Input data 1 Input data 2 Input data 3 Input data 4 Input data 5 Input data 6 Input data 7

t =0 1 2
= Job state { is a key parameter that determines both

stability and efficiency.
= {: cyber subsystem state (CSS)

12

Scheduling

Traditional model ' New model
Task-level fixed-priority CSS-level fixed-priority
e.g., Task 1 > Task 2 e.g., Task 1 (1=2) > Task 2 (=1)

> Task 1 ({=1) > Task 2 ({=0)
> Task 1 ({=0)

1. How to guarantee stability and efficiency
with a given priority? Analysis
2. How to find the best priority in terms of

stability and efficiency? Priority assignment
13

Analysis

Each task Each task, each CSS

» Deadline miss or not +

Deadline miss or not Cost upper-bound

 Worst-case release * Worst-case release patterns of
patterns of other tasks other tasks with different CSSes

14

Analysis

An upper-bound of the amount of execution of task
I's jobs with priority strictly higher than p in an
interval of length / such that the interval starts at
one of the release times of task i's jobs.

i(0) i(1) (2 @) i(0) i(1) i(2) i(3) i(0) i(1) i(2) i)

i ([LI 01)
(2)

15

Analysis

= Synchronous release is the worst case.

= Higher-priority execution upper-bounded by Z W;(l,p).

T, €T

» Response-time analvsis
R —Cr+) Wi(R",pp).

T €ET—{T1L}

» Testing order: Task i(0) -> Task i(1) -> Task i(2) ...

= |f Task i(x) is schedulable, Tasks i(y>x) are not feasible,

and incremental cost is no larger than Task i(x)’s cost.

16

Improved analysis

» Reduce pessimism by observing that all worst-case
situations cannot happen coincidently.

= Details will be available upon request.

17

= The number of combinations: n!

Priority assignment

o n: the number of all CSSes in a task set

= Addressing time-complexity
The lowest -> the highest
Observation: Task i(x)’s priority
affect Task i(y>x)’s response tir

Greedy approach: Try a task w «
iIncremental cost difference bet

a

I(X+1).
Linear time-complexity

Algorithm 2 Priority assignment for CFP

I: Peurr < 1, 1.€., we determine the lowest priority first.
2 pb — Pmaz, VJf where 7; € T and 1 < £ < m;.
3: while there exists Jf such that pf = Pmaz do

4:
5:

6

o 2

11:
12:
13:
14:
15:
16:
17:

18:
19:

<

J — 0.
for V7; € 7 such that pr = Pmaz do
/ « the smallest ¢ such that p = pras-
T — JU{JYifl < m;+ 1.)
Calculate an upper-bound of the response time of .],-‘
in case it has the priority of pey, using Theorem 2.
if the upper-bound is smaller than or equal to 7 then
Pt = Peurrs V< 0 < my + 1.
Exit for-loop and go to Step 19.
end if
end for
if 7 = () then
return INSTABLE
else
Find J/ € J which has the smallest I/ ™" — I!, and
then p§ “— Deurr-
end if
])('Ul'l' —])(‘HI'I' + 1'

20: end while
21: return STABLE with {p‘}.

18

Evaluation

 Randomly generated 10,000 task sets based on [29]

= Qurs(m): allowing at most m consecutive deadline miss,
applying CSS-level fixed-priority scheduling with our priority
assignment method

Task model # of task sets proven stable

Classical task model= Ours(0) 1906
Ours(1) 2892
Ours(2) 3201
Ours(3) 3336
Ours(4) 3397

= Compared to the classical task model, our model

yields more schedulable task sets.
19

Evaluation

» Elas(m): disallowing any deadline miss, but period
extension by (m+1), applying deadline monotonic
scheduling

“ Control cost: Ours(m) / Elas(m)

0 1.0
1 0.63
2 0.59
3 0.49
4 0.46

= Compared to frequency change, our model yields
less control costs.

20

Conclusion

Need of a new CPS task model

Development of the model

Addressing both stability and efficiency

Algorithm, analysis and priority assignment

21

