A Unifying Framework For Theoretical and Empirical **Analysis of Secure Communication Protocols**

Alexandra Boldyreva (Georgia Tech), Cristina Nita-Rotaru (Northeastern University) http://nds2.ccs.neu.edu/uframe.html

Objective

This project bridges the gap between protocol design, implementation, deployment, and security guarantees by developing a novel general security framework that facilitates the provable-security analyses of practical networking protocols.

QUIC **Connection Establishment** Encrypted/auth with secret key known only by the server signed client server c_i_hello: (cid) cid **{** \$ {0,1}⁶⁴ -generate stk based s_reject: (cid, scfg, stk) on client's IP -verify scfg signature -generate DH values c_hello: (*cid, stk, scfg, pub_c*) (sec_c, pub_c) -verify stk -establish initial -establish initial key using pub_c initial data exchange key using *scfg* -generate session DH values (sec_s, pub_s) s_hello: (*cid*, *pub*_s) -establish session -establish session data exchange key using *pub*, key using *pub*

Problem

Many network protocols are deployed without a formal security analysis resulting in attacks discovered after deployment. Many existing security specifications \bullet and analyses do not take into account such goals as performance and interoperability with other protocols that are already deployed in practice.

Approach

- Develop a novel security framework that will facilitate the provable-security analyses of practical networking protocols.
- Understand the tradeoffs between the level of complexity of a theoretical model and the extent of empirical evaluations needed to perform to capture security and performance.
- New security model that captures multi-key exchange and network-level attacks.
- New security model that captures properties of layered protocols.
- Analysis of QUIC, TCP Fast Open, TLS False Start, TLS 1.3.

Progress

Security analysis of QUIC, a secure protocol developed by Google and integrated with Chrome.

- QUIC meets our notion of QACCE-security if
 - Underlying signature scheme is 3 suf-cma
- Associated AEAD is ind-cpa and auth-secure
- SCDH Problem is hard
- In the random oracle (RO) model

Replay attack

Current Work

- TCP Fast Open and TLS False Start promise ulletsimilar properties to QUIC:
 - Authenticate and encrypt a connection
 - Similar latency promises
 - Key exchange complete after first phase
 - Provided optionally by several browsers
- Analyze security properties for TCP Fast Open + ulletTLS False Start and compare them with QUIC security and performance properties

Interested in meeting the PIs? Attach post-it note below!

National Science Foundation HERE DISCOVERIES BEGIN

The 3rd NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting January 9-11, 2017 Arlington, Virginia

