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Humans and CPS

Emphasis of our project:

How do we design cyberphysical systems that effectively learn about their
users, and optimize system behavior accordingly?

This poster: active regression as a vehicle to learn about users.
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Motivating example: Demand response

In a demand response system, we learn users’ preferences by
experimentation; e.g., current demand response programs will often run
randomized experiments to learn preferences.

Question: How can we be efficient in choice of which users to include in
an experiment?
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Motivating example: Demand response

We abstract the problem as follows:

1 A utility decides to run a demand response program.

2 Successive users arrive, and a choice must be made about whether to
include them in the trial.

3 The goal is to learn a model that maps user features to the expected
outcome (e.g., energy savings).

The formal problem is to choose users to include in an online fashion,
based on their features.
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The Problem – Formal Definition I

Data Generating Source

We assume the response of a user is given by a linear model Y = Xβ + ε,
where X ∈ Rd ,Y ∈ R, β ∈ Rd and ε ∼ N (0, σ2) ∈ R.

Also, X1, . . . ,Xn ∼ D = N (0,Σ); these are the features. We assume β
and σ2 are unknown.

We consider both the case where Σ is known and where it is unknown.
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The Problem – Formal Definition II

Online Setting

We see X1, . . . ,Xn sequentially, and we have to choose k out of them in
an online fashion. After selecting Xi , we get to see Yi .

Let S = {X(1), . . . ,X(k)} be the set of selected observations. Finally, we
compute our estimate βS by using those observations.
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The Problem – Formal Definition III

Goal

Our goal is to estimate β.

More concretely, we want to find βS to minimize

MSE(βS) = E[‖βS − β‖2] = σ2 E[Tr((XT
S XS)−1)],

where the expectation is taken wrt the training sequence of n observations,
and the algorithm / selection rule for S .

For passive learning, MSE(βS) = σ2 d
k−d−1 ≥ σ

2 d
k .
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The Problem – A few remarks

Minimizing the MSE for βS is equivalent to minimizing the expected trace
of the inverse Fisher information matrix. But (because we assumed a
linear model) Fisher Information does not depend on β! So no need to
look at the y ’s.

Want to minimize E[Tr((XT
S XS)−1)].
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The Solution – Intuition

We want large feature vectors leading to orthogonal columns.

But columns of X live in Rk , and there are d of them, with d � k .

So they will be close to orthogonal. Hence, we focus on large norms.

Idea: set a threshold Γ, and choose user i iff ‖xi‖ ≥ Γ.

Try to capture largest feature vectors: P(‖xi‖ ≥ Γ) = k/n.
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The Solution – Threshold Algorithm

After some analysis, we think a very simple algorithm works well:

Algorithm 1 Norm-based online active linear regression.

1: Set Γ = C
√

d + 2 log(n/k) and S = ∅.
2: for time 1 ≤ t ≤ n do
3: Observe Xt , estimate Σ̂t , compute Xt = Σ̂

−1/2
t Xt .

4: if ‖Xt‖ > Γ then
5: Choose Xt : S = S ∪ Xt .
6: if |S | = k then
7: Break.
8: end if
9: end if

10: end for
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The Solution – Threshold Algorithm

The selected observations (in red) usually look like:
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The Solution – Threshold Algorithm

And if Σ is not the identity, after whitening:
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Conjecture - Active Learning Gain

We think an algorithm like the one described in the previous slide yields

active learning error ≈

(
1

1 + 2
d log n

k

)
passive learning error.

How good is this?
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Theorem - Active Learning Gain

For the case where Σ is known:

Theorem

Let X be a k × d matrix with k observations in Rd chosen by the
thresholded-algorithm with T =

√
d + 2 log n/k. Let φ > 0, then there

exist C1,C2 > 0, positive constants (that may depend on d , k, n), such
that −C1 ≥ log(1− 1/d), and such that with probability at least
1− d e−C1kφ−C2k

Tr
(

(XTX )−1
)
≤ d

k
(

1 + 2 log n/k
d

)
(1− φ)

. (1)
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Open Questions and Next Steps

1 Extend analysis to settings where Σ is unknown, we need to compute
an initial estimate Σ̂ (Secretary Problem type of algorithms).

2 Extend analysis to other families of distributions for X (subgaussian,
subexponential distributions...).

3 Extend analysis to settings where d ≥ k, and regularization is
needed. In these cases, estimating Σ could be difficult.
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Open Questions and Next Steps II

1 If the underlying data source is not linear, what’s the gain with
respect to the best linear approximation with passive learning?

2 Apply same analysis to Logistic Regression; quite a different setting.
Fisher Info depends on β. Need to use βt to choose observation t + 1.

3 Latent feature subspaces in high-dimensions.

4 More simulations, and real experiments.
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Active Learning Gain

As a function of d , for fixed n = 10000 and k = 100:
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Active Learning Gain

As a function of n, for fixed k = 100 and d = 40:
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Active Learning Gain

As a function of k , for fixed n = 10000 and d = 50:
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