Active Regression for Cyberphysical Systems

Pls: Baosen Zhang, Ramesh Johari

University of Washington, Stanford University zhangbao@uw.edu, ramesh.johari@stanford.edu

November 3, 2015

Emphasis of our project:

How do we design cyberphysical systems that effectively learn about their users, and optimize system behavior accordingly?

This poster: active regression as a vehicle to learn about users.

Motivating example: Demand response

In a demand response system, we learn *users' preferences* by experimentation; e.g., current demand response programs will often run randomized experiments to learn preferences.

Question: How can we be efficient in choice of which users to include in an experiment?

We abstract the problem as follows:

- A utility decides to run a demand response program.
- Successive users arrive, and a choice must be made about whether to include them in the trial.
- The goal is to learn a model that maps user *features* to the expected *outcome* (e.g., energy savings).

The formal problem is to choose users to include in an *online* fashion, based on their features.

Data Generating Source

We assume the response of a user is given by a linear model $Y = X\beta + \epsilon$, where $X \in \mathbf{R}^d$, $Y \in \mathbf{R}$, $\beta \in \mathbf{R}^d$ and $\epsilon \sim \mathcal{N}(0, \sigma^2) \in \mathbf{R}$.

Also, $X_1, \ldots, X_n \sim D = \mathcal{N}(0, \Sigma)$; these are the *features*. We assume β and σ^2 are unknown.

We consider both the case where Σ is known and where it is unknown.

Online Setting

We see X_1, \ldots, X_n sequentially, and we have to choose k out of them in an online fashion. After selecting X_i , we get to see Y_i .

Let $S = \{X_{(1)}, \ldots, X_{(k)}\}$ be the set of selected observations. Finally, we compute our estimate β_S by using those observations.

Goal

Our goal is to estimate β .

More concretely, we want to find β_S to minimize

$$\mathsf{MSE}(\beta_{\mathcal{S}}) = \mathsf{E}[\|\beta_{\mathcal{S}} - \beta\|^2] = \sigma^2 \; \mathsf{E}[\mathsf{Tr}((X_{\mathcal{S}}^T X_{\mathcal{S}})^{-1})],$$

where the expectation is taken wrt the training sequence of n observations, and the algorithm / selection rule for S.

For passive learning, $MSE(\beta_S) = \sigma^2 \frac{d}{k-d-1} \ge \sigma^2 \frac{d}{k}$.

Minimizing the MSE for β_S is equivalent to minimizing the expected trace of the inverse Fisher information matrix. But (because we assumed a linear model) Fisher Information does not depend on β ! So no need to look at the y's.

Want to minimize $\mathbf{E}[\operatorname{Tr}((X_S^T X_S)^{-1})].$

We want large feature vectors leading to orthogonal columns.

But columns of **X** live in \mathbf{R}^k , and there are d of them, with $d \ll k$.

So they will be close to orthogonal. Hence, we focus on large norms.

Idea: set a threshold Γ , and choose user *i* iff $||x_i|| \ge \Gamma$.

Try to capture largest feature vectors: $\mathbf{P}(||x_i|| \ge \Gamma) = k/n$.

After some analysis, we think a very simple algorithm works well:

Algorithm 1 Norm-based online active linear regression.

1: Set
$$\Gamma = C\sqrt{d+2\log(n/k)}$$
 and $S = \emptyset$.
2: for time $1 \le t \le n$ do
3: Observe X_t , estimate $\widehat{\Sigma}_t$, compute $\overline{X_t} = \widehat{\Sigma}_t^{-1/2} X_t$
4: if $||\overline{X_t}|| > \Gamma$ then
5: Choose X_t : $S = S \cup X_t$.
6: if $|S| = k$ then
7: Break.
8: end if
9: end if
10: end for

The Solution – Threshold Algorithm

The selected observations (in red) usually look like:

Zhang, Johari (UW, Stanford)

November 3, 2015 11 / 1

The Solution – Threshold Algorithm

And if $\boldsymbol{\Sigma}$ is not the identity, after whitening:

We think an algorithm like the one described in the previous slide yields

active learning error
$$\approx \left(\frac{1}{1+\frac{2}{d}\log\frac{n}{k}}\right)$$
 passive learning error.

How good is this?

For the case where Σ is known:

Theorem

Let X be a $k \times d$ matrix with k observations in \mathbb{R}^d chosen by the thresholded-algorithm with $T = \sqrt{d + 2\log n/k}$. Let $\phi > 0$, then there exist $C_1, C_2 > 0$, positive constants (that may depend on d, k, n), such that $-C_1 \ge \log(1 - 1/d)$, and such that with probability at least $1 - d e^{-C_1k\phi-C_2k}$

$$Tr\left((X^T X)^{-1}\right) \leq \frac{d}{k\left(1+2 \frac{\log n/k}{d}\right)(1-\phi)}.$$
 (1)

- Extend analysis to settings where Σ is unknown, we need to compute an initial estimate Σ̂ (Secretary Problem type of algorithms).
- Extend analysis to other families of distributions for X (subgaussian, subexponential distributions...).
- Section 2 Extend analysis to settings where d ≥ k, and regularization is needed. In these cases, estimating Σ could be difficult.

- If the underlying data source is *not* linear, what's the gain with respect to the best linear approximation with *passive* learning?
- Apply same analysis to Logistic Regression; quite a different setting.
 Fisher Info depends on β. Need to use β_t to choose observation t + 1.
- States and the subspaces in high-dimensions.
- More simulations, and real experiments.

Active Learning Gain

As a function of d, for fixed n = 10000 and k = 100:

Zhang, Johari (UW, Stanford)

Active Learning Gain

As a function of *n*, for fixed k = 100 and d = 40:

Zhang, Johari (UW, Stanford)

November 3, 2015 18 / 1

Active Learning Gain

As a function of k, for fixed n = 10000 and d = 50:

Zhang, Johari (UW, Stanford)