Active Safety Control in Automotive Cyber-Physical Systems

PI: Francesco Borrelli

Email: fborrelli@me.berkeley.edu **Department of Mechanical Engineering** University of California Berkeley, USA

www.mpc.berkeley.edu

Karl Hedrick, Ruzena Bajcsy Edgar Lobaton, Ed Vul Cars Can Be Unsafe ~32k killed in 2012 ~2.5M injured

Driving Cars: Synoptic Scheme

Borrelli (UC Berkeley)

Active Safety in Automotive CPS

Borrelli (UC Berkeley)

Active Safety in Automotive CPS

Can We Make Vehicles Safer?

Predictions on

System Dynamics, Friction, Obstacles, Driver Behavior

Can We Make Buildings Greener?

Predictions on

Building Dynamics, Weather, Occupancy, Comfort

Advanced Active Safety System

Borrelli (UC Berkeley)

Basic Idea

At step t decide on u(t) based on prediction on $w(t), ..., w(t+N), \mathcal{Y}(t), ..., \mathcal{Y}(t+N)$

Two Combined Effects : Anticipation and Coordination

Borrelli (UC Berkeley)

Steps Towards Success

- "Good" Model Abstraction
- Quantifying Uncertain Predictions $w(t+1|t) \in W(t+1|t), \dots, w(t+N|t) \in W(t+N|t)$
- Safe Control Design and Architecture

Steps Towards Success

- "Good" Model Abstraction
- Quantifying Uncertain Predictions $w(t+1|t) \in W(t+1|t), \dots, w(t+N|t) \in W(t+N|t)$
- Safe Control Design and Architecture

Driving Cars: Synoptic Scheme

Borrelli (UC Berkeley)

Active Safety in Automotive CPS

Human-Vehicle Interface

Borrelli (UC Berkeley)

Active Safety in Automotive CPS

Hydraulic Brake Unit

2012 CPS Meeting–Oct. 4th – Slide 14

Active Safety in Automotive CPS

Driving Cars: Synoptic Scheme

Borrelli (UC Berkeley)

Active Safety in Automotive CPS

Vehicle-Road Interaction FEM Simulation and Simplified Nonlinear Model

Friction Coefficient Estimation Through Embedded Tire Sensors

Selec-Terrain®

Smart Tire Sensor

Active Safety in Automotive CPS

Driving Cars: Synoptic Scheme

Borrelli (UC Berkeley)

Active Safety in Automotive CPS

Human/Environment-Vehicle Interaction

"We know that a lot of the brain has an internal neural simulator"... "to anticipate or predict the future for a given a input"

Eric Kandel (Charlie Rose interview, 2008)

Anti-Lock Braking and Traction Control Systems

Counter-Steering and Over-Steering

No driver model exists in this regime....

Borrelli (UC Berkeley)

Active Safety in Automotive CPS 2012 CPS Meeting–Oct. 4th – Slide 23

Driver Modeling & In-Vehicle Sensors for Detecting Distraction

Borrelli (UC Berkeley)

Useful Model Abstraction

Nonlinear Dynamical System

$$\begin{split} m\ddot{y} &= -m\dot{x}\dot{\psi} + F_{y_{f,l}} + F_{y_{f,r}} + F_{y_{r,l}} + F_{y_{r,r}} \\ m\ddot{x} &= m\dot{y}\dot{\psi} + F_{x_{f,l}} + F_{x_{f,r}} + F_{x_{r,l}} + F_{x_{r,r}} \\ I\ddot{\psi} &= a(F_{y_{f,l}} + F_{y_{f,r}}) - b(F_{y_{r,l}} + F_{y_{r,r}}) \\ &+ c(-F_{x_{f,l}} + F_{x_{f,r}} - F_{x_{r,l}} + F_{x_{r,r}}) \\ \dot{Y} &= \dot{x}\sin\psi + \dot{y}\cos\psi \\ \dot{X} &= \dot{x}\cos\psi - \dot{y}\sin\psi \end{split}$$

• Static Nonlinearities

Tires

•Uncertain Predictions

Drivers Behavior and Environment

Inequality Constraints

Safety region

Steps Towards Success

- Good Model Abstraction
- Quantifying Uncertain Predictions $w(t+1|t) \in W(t+1|t), \dots, w(t+N|t) \in W(t+N|t)$
- Safe Control Design & Architecture

Steps Towards Success

- Good Model Abstraction
- Quantifying Uncertain Predictions

 $w(t+1|t) \in \mathcal{W}(t+1|t), \dots, w(t+N|t) \in \mathcal{W}(t+N|t)$

Safe Control Design & Architecture

Can We Make Vehicles Safer?

Predictions on

System Dynamics, Friction, Obstacles, Driver Behavior

Big Challenges

- Cost Effective and Evidence-Based Uncertain Quantification
- Assessing the Value of Uncertainty in Closed-Loop
- Real-time Use of Uncertain Prediction Maps

Understanding the Environment (foundation)

- Robust reconstruction of a scene in order to identify objects with guarantees.
- Hierarchical approaches that provide a trade-off between computational power and precision.

30

Understanding the Human Drivers (foundation)

- How will the driver act/react? How will other drivers act/react?
- Needs to be fast, and with accuracy guarantees
- 1. Develop detailed cognitive model
- 2. Use model to inform approximations
 - with abstraction, precision, and speed as needed
 - boundaries on precision/computational cost tradeoff
 - parametric formulation to capture driver variability
 - parameters ascertained empirically using real-world driving behavior and new data from the driving
 Bosimilatoreatile Berkeley and the Virtex Simulatorutomotive CPS
 2012 CPS Meeting–Oct. 4th Slide 31

Drive Modeling in Complex manouvers

Driver performs 180° turn by drifting

Snow test track

Record:

$$u = \delta$$

 $\xi = [\dot{y}, \dot{x}, \psi, \dot{\psi}, Y, X]'$

Car equipped with GPS, IMU

Drifting in ground vehicle

- Vehicle operating in the saturated regions of tires
- Hard to control, near unstable equilibrium points

Input and State Trajectories

JINC 3

Switched Differential Equation Model

e (rad)

Example 2: Test maneuver

Modeling Human Braking Behavior

Borrelli (UC Berkeley)

Active Safety in Automotive CPS

Steps Towards Success

- Good Model Abstraction
- Quantifying Uncertain Predictions $w(t+1|t) \in W(t+1|t), \dots, w(t+N|t) \in W(t+N|t)$
- Safe Control Design & Architecture

Control Design and Architecture

Moving from deterministic optimization to evidence-based and stochastic

Borrelli (UC Berkeley)

Active Safety in Automotive CPS

The Basic Setup – Finite Time Optimal Control

$$\min_{\substack{\pi_0(\cdot),\pi_1(\cdot),\dots,\pi_{N-1}(\cdot)}} J_{0\to N}(x_0,\Pi)$$

subj. to
$$k = 0,\dots,N-1 \begin{cases} x_{k+1} = f(x_k,u_k,w_k) \\ u_k = \pi_k(x_k) \\ u_k \in \mathcal{U}, x_k \in \mathcal{X}, \quad \forall w_k \in \mathcal{W} \end{cases}$$

 $\pi_k(\cdot)$ Feedback Control Policies: $\pi_k: x_k \in \mathcal{X} \mapsto u_k \in \mathcal{U}$ **Problem Class**

•
$$x_{k+1} = A^i x_k + B^i u_k + D^i w_k + c^i$$
 if $[x_k, u_k] \in \mathcal{X}^i$

• $\mathcal{X}, \mathcal{U}, \mathcal{W}$ polyhedra

• Piecewise Linear or Quadratic Costs

$$J_{0\to N}(x(0),\Pi) = \max_{w_0,\dots,w_{N-1}} \left[p(x_N) + \sum_{k=0}^{N-1} q(x_k,\pi(x_k)) \right]$$
$$J_{0\to N}(x(0),\Pi) = E_{w_0,\dots,w_{N-1}} \left[p(x_N) + \sum_{k=0}^{N-1} q(x_k,\pi(x_k)) \right]$$

Curve with and without ice patch Vx=14m/s, uncertain mu, steering only

Borrelli (UC Berkeley)

Active Safety in Automotive CP

Borrelli (UC Ber

Semi-Autonomous Driving – Volvo Experiments 2012

Cars Can Be Unsafe ~32k killed in 2012 ~2.5M injured

Tab	le 1:	Fatalit	ies and	Fatal	lity Ra	te in	2010
-----	-------	---------	---------	-------	---------	-------	------

Fatalities	Vehicle Miles of Travel	Fatality Rate per 100 Million Vehicle Miles of Travel
32788	37050 Millions	1.13

Experimental Validation

Platform 1. The Jaguar in Figure 5 is equipped with active steering, braking and throttling. GPS, accelerometers, gyros and 3D stereo vision. The controllers are run on a dSPACEAutobox system.

Platform 2. The VIRtual Test Track Experiment (VIRTTEX) simulator, pictured on the left, is a spherical dome (with a actual car inside) on top of a hydraulic system to mimic vehicle movement. In addition, it has image rendering technologies to provide a high-resolution, digitally projected 360-degree horizontal field-of-view to test and measure driver acceleration, braking and steering performance as well as overall driver reactions in varying conditions.

Platform 3. The *vehicular test bed* is a car equipped with outward looking and inward looking cameras observing the interior and exterior of the vehicle, illustrated on the left. Drivers will employ the test bed during daylong experiments (in real driving) while the driver's input, the vehicle's state, observations of the driver, and observations of the environment will be recorded for post-

prescan · ···)

ACC_Stop_GO_002 Motorway slow traffic (Stop&Go) (2)

Host car travels at 20 km/h in slow moving traffic column. Target car drives in front on the same line. It goes and stops within 0-10 km/h (due to traffic jam).

Semi-Autonomous Driving CPS

Acknowledgements

UC Berkeley Graduate Students

Yudong Ma, Theresa Lin, Yiqi Gao, Andrew Gray, Tony Kelman, Sergey Vicky, Sara Kohler, Aswin Carvalho, Claus Danielson, Yadranko Matusko

UC Berkeley Autonomy Team

Ramanarayan Vasudevan, Sanghyun Hong, Po Yan, Gregorij Kurillo, Karl Hedrick, Ruzena Bajcsy,

Former Collaborators

Miroslav Baric, Gurkan Erdogan, Ricardo Cervera Navarro, Mark Godwin

Industrial Partners

Ford Research Labs (USA)

• Eric Tseng, Davor Hrovat

Volvo Cars (Sweden)

Mohammad Ali, Erik Coegling

Hyundai Research Labs (Korea)

Chan Kyu Lee

Pirelli Research Labs (Italy)

Giorgio Audisio, Federico Mancosu

Hyundai Motor Company

Hyundai Center of Excellence in Integrated Vehicle Safety Systems & Control at UC Berkeley

