Active Safety Control in Automotive Cyber-Physical Systems

PI: Francesco Borrelli

Email: fborrelli@me.berkeley.edu

Department of Mechanical Engineering

University of California
Berkeley, USA

www.mpc.berkeley.edu

Co-PI Karl Hedrick, Ruzena Bajcsy

Automotive Cyber-Physical System

Safety

Comfort

Efficiency

Lane Departure A14 Highway – June 2009

2008 US Statistics

Table 1: Occupants and Nonoccupants Killed and Injured in Traffic Crashes

Description	Killed				Injured				
	2007	2008	Change	% Change	2007	2008	Change	% Change	
Total*	41,259	37,261	-3,998	-9.7%	2,491,000	2,346,000	-145,000	-5.8%	
Occupants									
Passenger Vehicles	29,072	25,351	-3,721	-13%	2,221,000	2,072,000	-149,000	-6.7%	
Passenger Cars	16,614	14,587	-2,027	-12%	1,379,000	1,304,000	-75,000	-5.4%	
Light Trucks	12,458	10,764	-1,694	-14%	841,000	768,000	-73,000	-8.7%	
Large Trucks	805	677	-128	-16%	23,000	23,000	0	0.0%	
Motorcycles	5,174	5,290	+116	+2.2%	103,000	96,000	-7,000	-6.8%	
Nonoccupants									
Pedestrians	4,699	4,378	-321	-6.8%	70,000	69,000	-1,000	-1.4%	
Pedalcyclists	701	716	+15	+2.1%	43,000	52,000	+9,000	+21%	
Other/Unknown	158	188	+30		10,000	9,000	-1,000		

Source: Fatalities - FARS 2007 (Final), 2008 (ARF), Injured - NASS GES 2007, 2008 Annual Files * Total includes occupants of buses and other/unknown occupants not shown in table.

Automotive Cyber-Physical System

Safety

Comfort

Efficiency

Human-Vehicle Interaction

Human-Vehicle Interaction

Hydraulic Brake Unit

Vehicle-Road Interaction FEM Simulation

Vehicle-Road Interaction Simplified Models

Vehicle-Road Interaction Simplified Models

Vehicle-Road Interaction Simplified Models

Environment-Human Interaction

http://www.nature.com/nrn/journal/v5/

"We know that a lot of the brain has an internal neural simulator"...

"to anticipate or predict the future for a given a input"

Eric Kandel (Charlie Rose interview, 2008)

CPS with Driver Assistance System (DAS)

Vast Majority of DAS systems

Anti-lock Braking Systems

Counter-Steering and Over-Steering

Vast Majority of DAS systems

Vehicle CPS Main Issues

- Complexity/Compositionality...
- "Shy" Autonomy
- No Guarantees/Heuristic Tunings
- Human MotionPerception/Cognition Ignored

CPS Main Issues

- Complexity/Compositionality
- "Shy" Autonomy
- No Guarantees/Heuristic Tunings
- Human Motion/perception/cognition ignored

Research Goals

Provably Safe and Adaptive Autonomy

Quantifying Uncertainties (Human and Environment)

Quantifying Uncertainties: Tire/Road Interaction

Quantifying Uncertainties: Tire/Road Interaction

Tangential and Lateral Sidewall

Quantifying Uncertainties: Driver Models

Objective: Exploit real-time driver state (joint angles) detection to extract compatible set of trajectories

Methodology:

1-Stereo cameras for 3D reconstruction of the scene

2- Articulated tracking, use body sensor network for validation

Real-Time 3D Reconstruction and the Middlebury Stereovision Dataset

Process	Our's	Wang	Bleyer
Teddy 1-Pixel Error	7.15%	8.31%	6.54%
Teddy Speed	42.1ms	20s	100s
Cone 1-Pixel Error	7.56%	7.18%	8.62%
Cone Speed	53.8ms	20s	100s

Portable Tele-immersion Demonstration

UC Berkeley, 2010

Real-Time 3d Reconstruction Driver

Provably Safe Adaptive Autonomy

Set-Based Control Design

$$x_{k+1} = f(x_k, u_k, w_k), x_k \in \mathcal{X}, u_k \in \mathcal{U}, w_k \in \mathcal{W}$$

Compute N-steps controllable set

• Given x_j compute \overline{u}_j such that $x_{j+1} \in \mathcal{K}_{j+1}, \forall w_j \in \mathcal{W}$

Set-Based Control Design

$$x_{k+1} = f(x_k, u_k, w_k), x_k \in \mathcal{X}, u_k \in \mathcal{U}, w_k \in \mathcal{W}$$

Compute N-steps controllable set

Benefit in Autonomy Concept

At time j

- ullet Driver intent w_j
- ullet Among all possible actuations \overline{u}_j choose the one that solves

$$min_{u_j} \parallel u_j - w_j \parallel subj.to. \ x_{j+1} \in \underline{\mathcal{X}_{j+1}}$$

Adaptive and Predictive Autonomy

Main Limitation: Real-Time Computation

``Predictive Control": Borrelli, Bemporad Morari

www.mpc.berkeley.edu

PWA Model

$$x_{k+1} = A^i x_k + B^i u_k + E^i w_k - C^i \quad if[x_k, u_k] \in \mathcal{P}^i$$

One-step robust controllable set

$$\mathcal{X}_j(S) = \{x \in \mathcal{X} | \exists u \in \mathcal{U}, \ s.t. \ f(x, u, w) \subseteq S, \forall w \in \mathcal{W} \}$$

- -For linear (A,B) system: $\mathcal{X}_j(S) = (\mathcal{X} \ominus \mathcal{W} \oplus (-BU))A$
- -For linear systems, result is polytope
- -For PWA systems, result is union of polytopes

Process Industry
4Ghz, 1 Terabyte

Automotive 50Mhz, 2 Mbytes

Safe Control Design Through Simplified Models

"True" System

$$x_{k+1} = f(x_k, u_k, w_k)$$

 $y_{k+1} = g(x_k)$
 $x_k \in \mathcal{X}, u_k \in \mathcal{U}, w_k \in \mathcal{W}$

Simplified System

$$z_{k+1} = h(z_k, u_k, w_k)$$

 $s_{k+1} = k(z_k)$
 $z_k \in \mathcal{Z}, u_k \in \mathcal{U}, w_k \in \mathcal{W}$

 \mathcal{Z}_k : k-step controllable set for "True" System when control law designed for simplified system is applied.

2D Example

States: $\dot{y}, \dot{\psi}$

Inputs: M

Disturbance: δ_f

 μ, V_x

Assume constant:

PWA approximation of Pacejka tire model

2D Example – Robust Set Computation

From 2-D to 12-D Example Experimental results @ 72 Kph on Ice

system

Conclusions/Outlook

- Developing concept and methods for Provably Safe Adaptive Autonomy
 - Quantifying uncertainties in
 - Vehicle/Road Interaction
 - Human/Car Interaction
 - Real-time Computation of Controllable Sets with different level of granularity

The Team

UC Berkeley

- Gurkan Erdogan
- Ramanarayan Vasudevan
- Ricardo Cervera Navarro
- Sanghyun Hong
- Theresa Lin
- Ye Zhuang
- Yiqi Gao
- Ruzena Bajscy
- Karl Hedrick

Ford Research Labs (Dearborn, USA)

Jahan Asgari, Eric Tseng, Davor Hrovat

Pirelli Research Labs (Milano, Italy)

Federico Mancosu, Giorgio Audisio