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Lane Departure A14 Highway — June 2009
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Table 1: Occupants and Nonoccupants Killed and Injured in Traffic Crashes

2008 US Statistics

- Killed Injured
Description
2007 2008 Change % Change 2007 2008 Change % Change
Total* 41,259 37,261 -3,998 -9.7% 2,491,000 2,346,000 -145,000 -5.8%
ccupants
Passenger Vehicles 29,072 25,351 -3,721 -13% 2,221,000 2,072,000 -149,000 -6.7%
Passenger Cars 16,614 14,587 -2,027 -12% 1,379,000 1,304,000 -75,000 -9.4%
Light Trucks 12,458 10,764 -1,694 -14% 841,000 768,000 -13.000 -8.7%
Large Trucks 805 677 -128 -16% 23,000 23,000 0 0.0%
Motorcycles 5,174 5,290 +116 +2.2% 103,000 96,000 -7,000 -6.8%
Nonoccupants
Pedestrians 4,699 4,378 -321 -6.8% 70,000 69,000 -1,000 -1.4%
Pedalcyclists 701 716 +15 +2.1% 43,000 22,000 +9,000 +21%
Other/Unknown 158 188 +30 = 10,000 9,000 -1,000 -

Source: Fatalities - FARS 2007 (Final), 2008 (ARF), Injured - NASS GES 2007, 2008 Annual Files
* Total includes occupants of buses and other/unknown occupants not shown in table.

www.mpc.berkeley.edu



Automotive Cyber-Physical System

Vehicle

Actuators

=

Vehicle and Tire

Sensor Data

Intelligence

Driver
Model/Intent

S

=

Safety Comfort Efficiency



CPS-Synoptic Scheme
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Human-Vehicle Interaction
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Human-Vehicle Interaction
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CPS-Synoptic Scheme
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Vehicle-Road Interaction
FEM Simulation
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Vehicle-Road Interaction
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CPS-Synoptic Scheme
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Environment-Human Interaction

Sensory Inputs

http://www.nature.com/nrn/journal/v5/




CPS-Synoptic Scheme
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“"We know that a lot of the brain has an internal neural simulator”...
“to anticipate or predict the future for a given a input”

Eric Kandel (charlie Rose interview, 2008)
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CPS with Driver Assistance System (DAS)
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Vast Majority of DAS systems

Human Vehicle

et I

Environment
Model

Environment




Anti-lock Braking Systems

Longitudinal Force

>

Maximum
Braking

Maximum .
Acceleration  Long. Slip

Steer Angle Ilzgr:gétudlnal

Lateral
Force




Counter-Steering and Over-Steering




Vast Majority of DAS systems
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Vehicle CPS Main Issues

Complexity/Compositionality...

“Shy” Autonomy

No Guarantees/Heuristic Tunings

Human MotionPerception/Cognition Ignored
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CPS Main Issues
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Research Goals
Provably Safe and Adaptive Autonomy

Quantifying Uncertainties (Human and Environment)
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Quantifying Uncertainties:
Tire/Road Interaction
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Quantifying Uncertainties:
Tire/Road Interaction
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Quantifying Uncertainties: Driver Models

Objective: Exploit real-time driver state (joint angles)
detection to extract compatible set of trajectories

Methodology:
1-Stereo cameras for 3D reconstruction of the scene
2- Articulated tracking, use body sensor network for validation
v r




Process

Real-Time 3D Reconstruction and the
Middlebury Stereovision Dataset

Portable Tele-immersion
Demonstration

Teddy 1-Pixel Error | 7.15% 8.31% UC Berkeley; 2010

Teddy Speed 42 .1ms 20s
Cone 1-Pixel Error 7.56% 7.18%
Cone Speed 53.8ms 20s
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Set-Based Control Design
L+l = f(a;k:uk:wk):xk = X,’U;k Eu:wk cw

e Compute N-steps controllable set
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Set-Based Control Design
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Benefit in Autonomy Concept

At time j
* Driver intent w;

* Among all possible actuations u; choose the one that
solves

Miny; ||u; — w;|| subj.to. xj41 € X4

e

Adaptive and Predictive Autonomy
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Main Limitation: Real-Time Computation

“Predictive Control”: Borrelli, Bemporad Morari
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e PWA Model
Ti1 = A'zg + B'ug + E'wg — C if[z, up] € P

e One-step robust controllable set
X;(S)={x e X|Fuecl, st. f(z,u,w) CS,Vwe W}

-For linear (A,B) system: X;(S) = (X oW (-BU))A
-For linear systems, result is polytope
-For PWA systemes, result is union of polytopes

F
. Process Industry

4Ghz, 1 Terabyte

Automotive
50Mhz, 2 Mbytes




Safe Control Design Through
Simplified Models

“True” System Simplified System
Tpa1 = F(@k Uk, wk) Bptl1 = h(zg, v, wg)
Ve t1 = 9(2x) sk+1 = k()

TpEAX,up U, up €W zp €EZ,upeU,wp €W

Zr: k-step controllable set for “True” System when control law
designed for simplified system is applied.



2D Example
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2D Example — Robust Set Computation




From 2-D to 12-D Example
Experimental results @ 72 Kph on Ice
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Conclusions/Outlook

e Developing concept and methods for
Provably Safe Adaptive Autonomy
— Quantifying uncertainties in
e \Vehicle/Road Interaction
e Human/Car Interaction

— Real-time Computation of Controllable Sets
with different level of granularity
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