
● Applications bind to timelines with a desired accuracy and resolution
● The system performs synchronization to achieve application demands
● Programmers use C++ interface to bind to timelines and query time

● Also supports interaction with other cyber-physical systems

● Typical controllers assume sensing and actuation to occur simultaneously
● Problem: network-distributed sensing/control cannot stabilize pendulum
● Approach: leverage the QoT stack to design a delay-tolerant controller

● Result: we show that a QoT-aware controller stabilizes the pendulum

● Linux exposes time to applications in a very limited way
○ No sense of uncertainty in current time estimate
○ Synchronization independent of application demand
○ Synchronization is not adpative or resource-aware

● What makes up Quality of Time (QoT) 
○ Knowing time - The current time is x with uncertainty σ
○ Keeping time - Wake me up after x, but no later than x±σ
○ Sharing time - Declare a group of networked applications to share time
○ Controlling time - Adapt a local sense of time to balance resources

■ Switching between oscillators to drive local time representation
■ Election of master time source for synchronization
■ Rate at which synchronization is carried out with master

● Goal: An adaptive, end-to-end Linux stack for enabling QoT
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Key Idea

Example: Distributed Inverted Pendulum Current Research Directions

● Improved synchronization algorithms - negotiation of 
master and slaves, based on application demands, the 
network topology, and resources available.

● Improved oscillation options - development of boards 
to discipline a crystal oscillator directly (Utah) and 
provide a fast start-up, low-power  clock source (UCLA).

● Improved radio technologies - developing PTP 
compliant Linux network drivers for an ultra-wideband 
radio, in order to enable wireless synchronization. 

● Quadrotor experimental platform (pictured right) - a 
UWB system for indoor quadrotor stabilization is 
currently undergoing testing at UCLA.

Code is available online: https://bitbucket.org/rose-line 

● Interface - the application programmer 
interface is a library that a third-party 
programmer links against in order to 
develop a time-aware application.

● Module - two kernel modules: one 
manages POSIX clocks that represent 
timelines, and the other provides hardware- 
dependent hooks to a timing architecture.

● Service - a data distribution service (DDS) 
driven daemon observes and shares 
timelines, and performs resource-aware 
synchronization to meet requirements.

Interface with devices, such as sensors and radios

Motivation

The Quality of Time (QoT) Stack for Linux
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int64_t accuracy = 1e3; // worst-case phase offset (ns) from timeline
int64_t resolution = 1e6; // minimum acceptable tick resolution (ns) 
qot::Timeline timeline("my_test_timeline", accuracy, resolution);
timeline.SetName("my_application_name"); // name of this application

int64_t tval = timeline.GetTime(); // current time (ns)
int64_t terr = timeline.GetError(); // error in the time estimate
timeline.WaitUntil(tval + 1e9); // blocking wait until 1s from tval

void callback(const std::string &tid, int64_t t) {
   std::cout << “Timer ” << tid << “ irq at ” << t; 
}
timeline.SetCaptureCallBack(callback);

bool timeline.GenerateInterrupt(
    "timer_name", // name of the timer pin 

true, // true: enable, false: disable
timeline.GetTime() + 1e9, // time of first rising edge
1e9, // PWM duty cycle high time (ns)

    2e9, // PWM duty cycle low time (ns)
10   // number of PWM cycles - 0:infinite, 1+:finite

);

https://bitbucket.org/rose-line/qot-stack

