
● Applications bind to timelines with a desired accuracy and resolution
● The system performs synchronization to achieve application demands
● Programmers use C++ interface to bind to timelines and query time

● Also supports interaction with other cyber-physical systems

● Typical controllers assume sensing and actuation to occur simultaneously
● Problem: network-distributed sensing/control cannot stabilize pendulum
● Approach: leverage the QoT stack to design a delay-tolerant controller

● Result: we show that a QoT-aware controller stabilizes the pendulum

● Linux exposes time to applications in a very limited way
○ No sense of uncertainty in current time estimate
○ Synchronization independent of application demand
○ Synchronization is not adpative or resource-aware

● What makes up Quality of Time (QoT)
○ Knowing time - The current time is x with uncertainty σ
○ Keeping time - Wake me up after x, but no later than x±σ
○ Sharing time - Declare a group of networked applications to share time
○ Controlling time - Adapt a local sense of time to balance resources

■ Switching between oscillators to drive local time representation
■ Election of master time source for synchronization
■ Rate at which synchronization is carried out with master

● Goal: An adaptive, end-to-end Linux stack for enabling QoT

An End-to-End Quality of Time (QoT) Stack for Linux

Andrew Symington (UCLA)

Co-Authors: Justin Pearson, Joao Hespanha and Masashi Wakaiki (UCSB), Fatima Muhammad,
Paul Martin and Mani Srivastava (UCLA), Adwait Dongare and Anthony Rowe (CMU)

Award # CNS-1329755 (UCLA), CNS-1329644 (CMU),
CNS-1329644 (UCSD), and CNS-1329650 (UCSB)

Type: Frontier; Start Date: June 2014

Key Idea

Example: Distributed Inverted Pendulum Current Research Directions

● Improved synchronization algorithms - negotiation of
master and slaves, based on application demands, the
network topology, and resources available.

● Improved oscillation options - development of boards
to discipline a crystal oscillator directly (Utah) and
provide a fast start-up, low-power clock source (UCLA).

● Improved radio technologies - developing PTP
compliant Linux network drivers for an ultra-wideband
radio, in order to enable wireless synchronization.

● Quadrotor experimental platform (pictured right) - a
UWB system for indoor quadrotor stabilization is
currently undergoing testing at UCLA.

Code is available online: https://bitbucket.org/rose-line

● Interface - the application programmer
interface is a library that a third-party
programmer links against in order to
develop a time-aware application.

● Module - two kernel modules: one
manages POSIX clocks that represent
timelines, and the other provides hardware-
dependent hooks to a timing architecture.

● Service - a data distribution service (DDS)
driven daemon observes and shares
timelines, and performs resource-aware
synchronization to meet requirements.

Interface with devices, such as sensors and radios

Motivation

The Quality of Time (QoT) Stack for Linux

SENSING

STOCHASTIC DELAYS

CONTROL

MASTER TIME

APPLICATION

ACCURACY RESOLUTION

int64_t accuracy = 1e3; // worst-case phase offset (ns) from timeline
int64_t resolution = 1e6; // minimum acceptable tick resolution (ns)
qot::Timeline timeline("my_test_timeline", accuracy, resolution);
timeline.SetName("my_application_name"); // name of this application

int64_t tval = timeline.GetTime(); // current time (ns)
int64_t terr = timeline.GetError(); // error in the time estimate
timeline.WaitUntil(tval + 1e9); // blocking wait until 1s from tval

void callback(const std::string &tid, int64_t t) {
 std::cout << “Timer ” << tid << “ irq at ” << t;
}
timeline.SetCaptureCallBack(callback);

bool timeline.GenerateInterrupt(
 "timer_name", // name of the timer pin

true, // true: enable, false: disable
timeline.GetTime() + 1e9, // time of first rising edge
1e9, // PWM duty cycle high time (ns)

 2e9, // PWM duty cycle low time (ns)
10 // number of PWM cycles - 0:infinite, 1+:finite

);

https://bitbucket.org/rose-line/qot-stack

