Graph Analysis with Node-Level Differential Privacy

Shiva Kasiviswanathan[†] Kobbi Nissim [‡] Sofya Raskhodnikova* Adam Smith*

> [†] GE Research [†]Ben Gurion U. + MSR *The Pennsylvania State University PENNSTATE

Privacy for Network Data

Many datasets can be represented as graphs

- Friendships in online social network
- Financial transactions
- Email communication
- Romantic relationships

Privacy is a big issue!

Differential Privacy for Graph Data

Differential privacy [Dwork McSherry Nissim Smith 06]

An algorithm A is ϵ -differentially private if

for all pairs of neighbors G, G' and all sets of answers S:

 $Pr[A(G) \in S] \leq e^{\epsilon} Pr[A(G') \in S]$

Two Notions of Neighbors

• Edge differential privacy

Two graphs are **neighbors** if they differ in **one edge**.

Node differential privacy

Two graphs are **neighbors** if one can be obtained from another by deleting a node and its adjacent edges.

Our Contributions

- First node differentially private algorithms that are accurate for sparse graphs
 - private for all graphs
 - accurate for a subclass of graphs, which includes
 - graphs with known (not necessarily constant) degree bound
 - graphs where the tail of the degree distribution is not too heavy
- dense graphs
- Techniques for node differentially private algorithms
- Methodology for analyzing the accuracy of such algorithms on realistic networks

Independent work on node privacy: [Blocki,Blum,Datta,Sheffet]

Prior Work on DP Computations on Graphs

Edge differentially private algorithms

- number of triangles, MST cost [Nissim Raskhodnikova Smith 07]
- **degree distribution** [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09]
- small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 12]

Edge private against Bayesian adversary (weaker privacy)

• small subgraph counts [Rastogi Hay Miklau Suciu 09]

Edge zero-knowledge private (stronger privacy)

 average degree, distances to nearest connected, Eulerian, cycle-free graphs [Gehrke Lui Pass 12]

Our Techniques

Challenge with Node Privacy: High Local Sensitivity

• Local sensitivity [NRS'07]:

$$LS_f(G) = \max_{G': \text{neighbor of } G} |f(G) - f(G')|$$

• Global sensitivity [DMNS'06]:

For many functions f of the data, node $LS_f(G)$ is high.

- Consider adding a node connected to all other nodes.
- Examples:
- Edge $GS_{f_{-}}$ is 1; node $LS_{f_{-}}(G)$ is n for all G. $F_{-}(G) = |E(G)|.$
- $\succ f_{\Delta}(G) = \# \text{ of } \Delta s \text{ in } G. \text{ Edge } GS_{f_{\Delta}} \text{ is } n; \text{ node } LS_{f_{\Delta}}(G) \text{ is } |E(G)|.$

"Projections" on Graphs of Small Degree

Let G = family of all graphs,

 G_d = family of graphs of degree $\leq d$.

Notation. $\Delta f = \text{node } GS_f \text{ over } G$.

 $\Delta_d f = \text{node } GS_f \text{ over } G_d.$ **Observation.** $\Delta_d f$ is low for many useful f.

 $ightharpoonup \Delta_d f_{\Delta} = {d \choose 2}$ (compare to $\Delta f_{\Delta} = |E|$)

Idea: "Project" on graphs in G_d for a carefully chosen d << n.

Method 1: Lipschitz Extensions

A function f' is a Lipschitz extension of f from G_d to G if

- $\succ f'$ agrees with f on $\boldsymbol{\mathcal{G}}_d$ and $> \Delta f' = \Delta_d f$
 - $low \Delta_d f$

high Δf

high Δf

 $\Delta f' = \Delta_d f$

- Release f' via GS framework [DMNS'06]
- ullet Requires designing Lipschitz extension for each function fwe base ours on maximum flow and linear and convex programs

Method 2: Generic Reduction to Privacy over G_d

Input: Algorithm B that is node-DP over $\boldsymbol{\mathcal{G}}_d$ Output: Algorithm A that is node-DP over G, has accuracy similar to B on "nice" graphs

- Time(A) = Time(B) + O(m+n)
- Reduction works for all functions *f*

How it works: Truncation T(G) outputs G with nodes of degree > d removed.

- Answer queries on T(G) instead of G
 - via Smooth Sensitivity framework [NRS'07]
 - via finding a DP upper bound ℓ on $LS_T(G)$ [Dwork Lei 09, KRSY'11] and running any algorithm that is $\binom{\epsilon}{\ell}$ -node-DP over \mathcal{G}_d

Our Results

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs (e.g., triangles, k-triangles, k-stars)
 - Degree distribution
- via generic reduction

via Lipschitz

extensions

- Analysis of our algorithms for graphs with not-too-heavy-tailed

degree distribution: with α -decay for constant $\alpha > 1$ **Notation:** \overline{d} = average degree P(d) = fraction of nodes in G of degree $\geq d$

A graph G satisfies α -decay if for all t > 1: $P(t \cdot \bar{d}) \le t^{-\alpha}$

 Every graph satisfies 1-decay - Natural graphs (e.g., "scale-free" graphs, Erdos-Renyi) satisfy $\alpha>1$

Obtaining Lipschitz Extensions

Lipschitz Extension of f_{-} via Flow Graph

For a graph G=([n], E), define flow graph of G:

 $v_{\text{flow}}(G)$ is the value of the maximum flow in this graph. **Lemma**. $v_{\text{flow}}(G)/2$ is a Lipschitz extension of f_{-} .

Lipschitz Extensions via Linear and Convex Programs

For a graph G=([n], E), define LP with variables x_T for all triangles T: for all triangles T $x_T \leq \Delta_d f_{\Delta}$ for all nodes v

 $v_{LP}(G)$ is the value of LP.

Lemma. $v_{LP}(G)$ is a Lipschitz extension of f_{Δ} .

- Can be generalized to other counting queries
- Other queries use convex programs

Generic Reduction (via Smooth Sensitivity)

↑Frequency

- Truncation T(G) removes nodes of degree > d.
- On query *f* , answer A(G) = f(T(G)) + noise

How much noise?

• Look at local sensitivity of T as a map $\{graphs\} \rightarrow \{graphs\}$

Nodes that

determine $LS_T(G)$

- $dist(G, G') = \#(node\ changes\ to\ go\ from\ G\ to\ G')$

$$LS_T(G) = \max_{G': \text{ neighbor of } G} dist(T(G), T(G'))$$

Lemma. $LS_T(G) = 1 + |\{nodes \ of \ degree \ d \ or \ d + 1\}|$ • Global sensitivity $\max_{C} LS_{T}(G)$ is too large

Smooth Sensitivity Framework [NRS '07]

- $S_f(G) \le e^{\epsilon} S_f(G')$ for all neighbors G and G'

 $S_f(G)$ is a smooth bound on local sensitivity of f if $- S_f(G) \leq LS_f(G)$

Lemma.

 $S_T(G) = \max_{k>0} e^{-\epsilon k} \left(1 + \#\{nodes \ of \ degree \left(d \pm (k+1) \right) \} \right)$

is a smooth bound for T, computable in time O(m+n)

• "Chain rule": $S_f(G) = S_T(G) \cdot \Delta_d f$ is smooth for $f \circ T$

 $E[S_T(G)] \le (P(d)n) \frac{2\log n}{\epsilon d} + \frac{1}{\epsilon} + 1$ = #(nodes of degree above d)

Theorem. There exists a node-DP algorithm A such that $||A_{\epsilon,\alpha}(G) - DegDistrib(G)||_1 = o(1)$

If G is d-bounded, add noise $O(\Delta_f/\epsilon^2)$

with prob. at least $^2/_3$ if G satisfies α -decay for $\alpha > 1$.

Conclusions

- First nontrivial node-private algorithms for sparse graphs
- Technique: projections onto graphs of small degree

