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Privacy for Network Data

Many datasets can be represented as graphs
* Friendships in online social network
* Financial transactions
* Email communication /‘: = ,!.:K

R

Privacy is a
big issue!
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ifferential privacy [Dwork McSherry Nissim Smith 06]

* Romantic relationships = e,

An algorithm A is e-differentially private if
for all pairs of neighbors G, G' and all sets of answers S:

K Pr|(A(G) € S| < e Pr|A(G') € S] y

Two Notions of Neighbors

e Edge differential privacy
G: .Yt gt G

-~

Two ér/aphs are ne\i‘ghbors if they difféf in one\ed_;]\é.

* Node differential privacy
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Two graphs are neighbors if one can be obtained from another by
deleting a node and its adjacent edges.

Our Contributions

e First node differentially private algorithms that are
accurate for sparse graphs

— private for all graphs

— accurate for a subclass of graphs, which includes
e graphs with known (not necessarily constant) degree bound
e graphs where the tail of the degree distribution is not too heavy
e dense graphs

e Techniques for node differentially private algorithms

e Methodology for analyzing the accuracy of such
algorithms on realistic networks

Independent work on node privacy: [Blocki,Blum,Datta,Sheffet]

Prior Work on DP Computations on Graphs
Edge differentially private algorithms

e number of triangles, MIST cost [Nissim Raskhodnikova Smith 07]

e degree distribution [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09]
e small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 12]
Edge private against Bayesian adversary (weaker privacy)
e small subgraph counts [Rastogi Hay Miklau Suciu 09]

Edge zero-knowledge private (stronger privacy)

e average degree, distances to nearest connected, Eulerian,
cycle-free graphs [Gehrke Lui Pass 12]
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Our Techniques

Challenge with Node Privacy: High Local Sensitivity

e Local sensitivity [NRS'07]: O
LS;(6)= , max _|f(6) - f(G") ‘iw’
G':neighbor of G . /‘\,“\;\51,;'1‘,\.5\5}:;/;
/ RS BN
e Global sensitivity [DMNS’06]: = {‘I’:ﬁ@'};\;‘*\\
SINZ?

GSy = max LS¢(G)

For many functions f of the data, node LS;(G) is high.

e Consider adding a node connected to all other nodes.

e Examples:

> f_(G)= |E(G)]. Edge GSf_is 1; node LSy _(G) is n for all G.
> fa(G)=#of Asin G. Edge GS¢,isn; node LS, (G) is [E(G)].

“Projections” on Graphs of Small Degree

Let G = family of all graphs, G
G, = family of graphs of degree < d.
Notation. Af = node GS; over G.
Agqf = node GSf over G,.

Observation. A, f is low for many useful f.

Examples:

» Aif_=d (comparetoAf_=n)
> Agfac= (‘Zl) (compare to Af ) = |E|)

/
— —— Goal: privacy for all graphs ———
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Idea: “"Project” on graphs in G, for a carefully chosen d << n.

Method 1: Lipschitz Extensions

A function [ is a Lipschitz extension
of f from G, to G if
> f' agrees with f on G; and
\__ZAf =A4f /

high Af
Af'=A4f

e Release f' via GS framework [DMNS'06]

e Requires designing Lipschitz extension for each function f

— we base ours on maximum flow and linear and convex programs

Method 2: Generic Reduction to Privacy over G,

e )
Input: Algorithm B that is node-DP over G4 g

Output: Algorithm A that is node-DP over G,
has accuracy similar to B on “nice” graphs

o J
e Time(A) = Time(B) + O(m+n)
e Reduction works for all functions f

high Af

How it works: Truncation T(G) outputs G

with nodes of degree > d removed.

e Answer queries on T(G) instead of G

» via Smooth Sensitivity framework [NRS'07]
» via finding a DP upper bound ¢ on LS+(G) [Dwork Lei 09, KRSY’11]
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and running any algorithm that is (e)-node-DP over G,

Our Results

Node differentially private algorithms for releasing

~

— number of edges L. .
& via Lipschitz

— counts of small subgraphs > )
extensions

(e.g., triangles, k-triangles, k-stars) |
} via generic reduction

e Analysis of our algorithms for graphs with not-too-heavy-tailed
degree distribution: with a-decay for constanta > 1

— Degree distribution

Notation: d = average degree

1 Frequency
P(d) = fraction of nodes in G of degree > d -
A graph G satisfies a-decay if _' /\i
forallt >1: P(t-d)<t™® u [_- il HN
d t-d Degrees

— Every graph satisfies 1-decay
— Natural graphs (e.g., “scale-free” graphs, Erdos-Renyi) satisfy a > 1
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Obtaining Lipschitz Extensions

Lipschitz Extension of f_ via Flow Graph

For a graph G=([n], E), define flow graph of G:

Add edge (u, v") iff (u,v) € E.
V10w (G) is the value of the maximum flow in this graph.

Lemma. vg,w(G)/2 is a Lipschitz extension of f_.
Lipschitz Extensions via Linear and Convex Programs

For a graph G=([n], E), define LP with variables x; for all triangles T':

Maximize z X

T=AofG

0<xr<1 for all triangles T
2 xy < Agfa forall nodes v
T:vEV(T) )

v1p(G) is the value of LP.

Lemma. v p(G) is a Lipschitz extension of f,.
e Can be generalized to other counting queries

e Other queries use convex programs

Generic Reduction (via Smooth Sensitivity)

* Truncation T(G) removes
nodes of degree > d.

Nodes that
determine LS (G)

1 Frequency

.

e Look at local sensitivity of T as a map {graphs} — {graphs}
- dist(G,G") = #(node changes to go from G to (')

dist(T(G),T(G"))

e On query f, answer
A(G) = f(T(G)) + noise

How much noise?

N

Degrees

d 1

LS (G) = max

G': neighbor of G

Lemma. LS7(G) = 1 + |{nodes of degree d or d + 1}|

e Global sensitivity max LS+(G) is too large

/Smooth Sensitivity Framework [NRS ‘07] h
S¢(G) is a smooth bound on local sensitivity of f if
- 5;(6) < LS;(6)
\_ -~ 57(G) < e°S;(G") forall neighbors G and G’ -

Lemma.

Sr(G) = max e~ (1 + #{nodes of degree (d + (k + 1))})

is a smooth bound for T, computable in time O(m + n)
e “Chainrule”: S¢(G) = Sp(G) - Ayf is smooth for f o T

query f

‘ f(T(G)+ noise(S;(G) - Adf)\

— T(G)

EE

— S7(G)

Lemma. (VG, d) If we truncate to a random degree in [d, 2d],

ELS:(6)] < (P(dy) ™ 4.~

+—-+1
S ed €
@odes of degree abo/ve_dl;

If G is d-bounded, add noise O (Ar/€*)

Theorem. There exists a node-DP algorithm A such that
||A6,a(G) — DegDistrib(G)”1 =0(1)

with prob. at least 2/ if G satisfies a-decay for a > 1.

Conclusions

* First nontrivial node-private
algorithms for sparse graphs

* Technique: projections onto
graphs of small degree
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