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Transportation systems are moving from individual vehicles operating under
manual control, either by a driver or a centralized traffic controller, to intercon-
nected systems with varying levels of interaction and autonomy. In such systems,
the complexity of the interaction can lead to emergent behaviors that are dif-
ficult to predict or anticipate. Before such systems can be deployed, we need
a strong argument that it is possible to engineer them to the desired levels of
safety and trustworthiness. Even with existing systems, we have seen a spate of
errors arising from the interaction between different features and subsystems.

An assurance case presents an argument that an engineered artifact is fit
for a purpose. In addition to the functional and performance characteristics of
the artifact, an assurance case also argues that the artifact is reliable, safe,
and secure. Traditionally, assurance cases have either been based on following a
set of practices or have relied heavily on careful documentation. We have been
developing an approach to assurance cases for transportation systems based on
formal procedures integrating multiple tools for analysis and synthesis. We have
also developed individual tools that operate at all levels of the design process.
We argue, based on our experience, that

1. For cyber-physical systems like transportation systems, the assurance argu-
ment must be developed as part of the design. System safety should not be
an isolated analysis but should be an integral part of the verification ac-
tivities at the component and system levels. This would allow risks to be
identified and resolved early in the design lifecycle.

2. The assurance case must come with both formal and empirical guarantees
where a significant portion of the assurance processes are automated. This
would allow assurance cases for large and complex systems to be curated
and maintained even as the requirements and designs change and evolve.

3. Assurance is an enabling technology for developing systems of greater scale
and complexity without compromising on safety and security. This kind of
scaling can be achieved by decomposing the assurance argument horizontally
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by levels of abstraction, and vertically by function, to yield reusable patterns
of design and assurance.

Assurance-Driven Design. Cyber-physical systems are composed of many inter-
acting components, including both electro-mechanical components and software-
based electronic control units. These components might operate at different
physical and time scales, and can interact both physically through sensors and
actuators, and electronically. Examples of such systems can range from simple
thermostats to large complex systems like the power grid and the air-traffic con-
trol system. Software failures or vulnerabilities in cyber-physical systems can
cause physical harm. Since these systems exhibit a possibly uncountable range
of executions and operate in an unpredictable physical environment, the soft-
ware must be accompanied by evidence of trustworthiness that goes beyond
the empirical. The assurance case for such a system is “a documented body of
evidence that provides a convincing and valid argument that a specified set of
critical claims about a system’s properties are adequately justified for a given
application in a given environment.”3 This means that the software must not
only work reliably, but it must be predicted to do no harm. Such an argument
cannot be constructed after the software has already been built since the design
of the software impacts the complexity of the assurance case.

Assurance-driven design takes a systematic approach to designing embedded
software in a way that supports effective assurance. The design is decomposed
into a series of abstraction layers that make certain explicit assumptions and ap-
proximations. At the highest level is the actual physical view of the system, e.g.,
a building climate control system. At the next level, we have the models that
capture the engineering approximations, inaccuracies, and imprecisions. Such a
model can be captured in a form that is amenable for simulation. The third
abstraction layer introduces computational elements that involve dataflow and
temporal dependencies between the physical and computation components. The
fourth layer maps the computation to a physical platform with numeric errors as
well as timing jitters. The physical layer also introduces failure models for sen-
sors, actuators, and controllers. The design can also decomposed in the vertical
dimension to isolate specific aspects such as information flow, timing, numeric
error, logging, monitoring, error handling, sensor fusion, and fault tolerance. An
assurance case structured along the above lines introduces a systematic separa-
tion of concerns that allows the global view of a reliable climate control system
to be decomposed to systems that control heaters, air conditioners, and valves
to regulate the temperature across the different sections of a building. Each level
of the design employs models that abstract and approximate the inaccuracies,
imprecision, jitter, and failures of the design elements at the lower levels. Some
of these relationships across levels are informal or semi-formal, but a majority
of them can be formalized. Once formalized, the claims associated with these
relationships can be verified using one or more formal tools.

3 R. E. Bloomfield, P. G. Bishop, C. C. M. Jones, and P. K. D. Froome, Adelard Safety
Case Development Manual, 1998.
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We are developing prototypes of such layered assurance arguments for a cock-
pit display subsystem, a simple air-traffic algorithm, and a high-assurance robot
vehicle. As part of this work, we are also developing and sharpening the tools
used for constructing assurance cases. Some of these tools deal directly with
model-based designs and their high-level properties, while others deal with the
source and object code. We have also developed a tool integration platform,
the Evidential Tool Bus (ETB), specifically targeting the curation of claims and
evidence from multiple analysis and synthesis tools. ETB can be used to inte-
grate new tools, develop assurance workflows, apply these workflows to establish
claims that are supported by arguments and evidence. Claims can be established
directly by formal or semi-formal tools, by evidence in the form of documents,
or by chains of inference. The certification objectives and verification claims
and evidence required by directives such as RTCA DO-178C can be codified
by means of rules in ETB. The argument and (version-controlled) evidence can
be developed to meet these directives, and maintained against changes to the
inputs, e.g., requirements, designs, or source code.

Assurance Tools and Techniques. There are now many formal and semi-formal
techniques that are effective for achieving and maintaining high levels of assur-
ance. These include abstract computational models that are suitable for cyber-
physical systems, formal models for real-time and hybrid systems, model-based
design tools, code generation tools, contract languages, test case generators,
static and dynamic analyzers, and high-assurance platforms. Recent advances in
Boolean and theory satisfiability, particularly through powerful solvers like Yices
and Z3, have made it possible to generate test cases, synthesize controllers, build
abstractions, and perform static analysis. Breakthroughs in solvers for nonlin-
ear arithmetic constraints are particularly helpful in analyzing constraints from
physical systems. Interactive theorem provers like Coq and PVS have been used
to model and verify complex air-traffic algorithms and to verify hardware and
compilers. We have also developed tools for directly analyzing Simulink models
for dimensional correctness, signal ranges, and input/output contracts.

Challenges. Though computers have been used in embedded, real-time applica-
tions for decades, cyber-physical systems offer a bigger challenge since they are
complex, distributed systems with many interacting elements. We are only at
the preliminary stages of developing a discipline of assurance-driven design for
such systems. We need a way of quantifying the impact of assurance-driven de-
sign on the cost of developing and assuring cyber-physical systems. We also need
better automated tools, particularly those that can deal with controller synthe-
sis and the analysis of large hybrid systems. A formal understanding of human
factors can be very helpful in understanding the sources of human error and in
designing interfaces that make it safer and easier to monitor and control large
systems. Since cyber-physical systems, particularly those used in transportation,
combine many different modules, it is important to develop compositional ap-
proaches to assurance-driven design that allow these techniques to scale with
respect to system size and complexity. Developing an assurance case is an ex-
pensive exercise, and the cost needs to be amortized through reuse. However, as
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illustrated by the Ariane-5 launch disaster, reusing designs and software can be
fraught with risk. A rigorous discipline of assurance-driven design can go a long
way toward mitigating the risk, promoting reuse, and reducing the cost of devel-
oping software-intensive solutions to complex transportation system challenges.
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