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Modern medical device systems have thus
become a distinct class of cyber-physical
systems, which we call Medical Cyber
Physical Systems (MCPS)

* The goal of this project is a new

development paradigm for the design and
implementation of safe, secure, and
reliable MCPS:

— A compositional development framework for safe and
secure MCPS

— An approach to evidence-based regulatory approval
and incremental certification of MCPS

— Techniques for rigorous evaluation of clinical scenarios,
both operational procedures for caregivers and device
systems

— Control-theoretic methods to the design of
physiological closed-loop scenarios

Motivation

Continuous physiologic monitoring challenges:

* Too many false alarms cause alarm fatigue

— Alarms become useless, clinicians ignore them

— Puts patients at risk

* Maintain Patient Records
* Actuate Treatment
* Enable continuous care

Challenges
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Smart Alarms and Decision Support

Smart Alarm Results

through monitor-adjacent tablets (see left)

— Has allowed us to quantify alarms types and frequencies (right)

Data deluge makes data-driven practice difficult _ 579% reduction in false alarms

— Clinicians discard large amounts of data
— Reduces the promised benefit of digital medical devices

Projects
Smart Alarm Refinement

— Accurate detection of deterioration in Surgical ICU

Vasospasm Clinical Decision Support

— Learning to predict vasospasm from physiologic data

Early Detection of Sepsis

Goals

Develop a set of generic infusion pump development ;=
artifacts that can be used as a reference standards and TJH 5 iy
demonstrate safety, using a model based approach. s i =~ | « Explore behaviors of physical

Approach
Use modeling in the physical domain to elicit
requirements.

Provide clear, precise, and formalizable requirements.

Presbyterian Hospital Surgical ICU Data Collection

— Collection of vitals, alarms, and unique nurse annotations

Green Alarms

Early Detection of Critical Shunts in Infants

o Parameter-Invariant Detector
&" * Guaranteed false alarm rate for all patients

Progress
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timing variability captured as parametric
constraints over clocks
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We implemented
ModalT, an
eclipse plugin that
enables the
specification and
analysis of TPMS

Co-Developed with “Trustworthy Composition of Dynamic App-Centric Architectures for Medical Application Platforms,” NSF CPS ACI-1239324

CPS: Large: Assuring the Safety, Security and Reliability of Medical

CIMIT

Center for Integration of Medicine
& Innovative Technology

* Released OpenlCE, a DDS-based open-source implementation of MDPnP

platform

* |nvolved with the AAMI standards groups for Assurance Cases and for
Infusion Devices for better guidance on clinical issues and safety
requirements

Medical Device Mobile PnP Prototype Platform (MD MP3)

[ Caregiver ]

Supervisor

I

e MD MP3 cart is a platform for the
development of smart pump control

algorithms

* ltincludes two pulse oximeters, a

Eﬁ?&ﬂi 1T GO nga;aer infusion pump specially modified to run
/ I software based on prior Generic Infusion
Adapter Adapter Adapter Pump research that supports external
PulseOx Pump PulseOx control over the network
\ / * It runs areal-time network over Ethernet
[ Patient J hardware that guarantees message

Evaluation and Enhancement of an Intra-

Operative Insulin Infusion Protocol

*  We evaluated a currently used ICU insulin titration protocol by running
in-silico experiments using an FDA-approved Type 1 Diabetic Simulator
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* Improve SICU deterioration detection through invariant modeling (see right)

GPCA: Model-Based Development

Model Based Requirements Analysis

Platform-Specific Timing Analysis

Control System models

Validation Motivation: Platform-Independent Timing Abstraction
« We are validating the development e Efficient model verification by hiding the details of the complex platform-

* Timing analysis of the platform-independent software executing on a

practice

process using the GPCA reference specific timing information (e.g., OS scheduling)
system implementation platform * Initiating the modeling phase without sufficient platform-specific timing
. E\./aluatlon control apnroaches information
 Discover system requirements Goal ‘

Motivation

Goals

Lack of architectural security solution in

Lack of security requirement definition or
instructions in standard

simulated respiratory rate monitor and an

delivery with bounded latency

Model-based Safety Analysis of Multi-mode
Human-Supervised Closed-loop Medical Systems

 The control algorithm in the artificial pancreas (AP) system can switch
between different levels of automation to accommodate user

preferences

*  We have demonstrated that patient safety may be compromised in
certain scenarios and propose a mode-switch supervision mechanism

to mitigate the risks

 Anunsafe mode-switch example: patient’s glucose reading rapidly
drops -> the “insulin brake” algorithm attenuates the infusion rate ->
user chooses to turn off the pump -> patient’s glucose rebounds into
hyperglycemia after a prolonged period of no insulin infusion

* Joint work with Dr. Stephen Patek and Dr. Patrick Keith-Hynes at UVa

Center for Diabetes Tech
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Patek, Stephen D., Sanjian Chen, Patrick Keith-Hynes, and Insup Lee. "Distributed aspects
of the artificial pancreas." In Allerton, pp. 543-550. 2013.

Security requirement set

1. Device and user identification 5. Channel flow control
2. Undeniable log for actions 6. Configurable access

with signature and timestamp.  control

3. Verification of device 7. Dynamical adjustment
(including Apps) authenticity for App’s privileges

Establish a clinical scenario driven process for  and integrity
the identification of security threats in MCPS 4.

8. A break-the-glass

Communication encryption. mechanism.

: : : Architectural models o particular platform * Develop a relatively comprehensive set of 9. Data storage encryption
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Goal

* Inan ICU where many medical devices are .

connected to a patient, how to identify the
device(s) that caused for patient adverse event if
ohe occurs?

Benefits
Liability attribution—manufacturers should be

hold liable for adverse events caused by their

own devices

Hazard identification—discovering potentially .
unknown hazards in medical device inter-
operability setting

Challenges
When does an adverse event happen?
How to define causality?
How to reason about causality?

Shaohui Wang, Anaheed Ayoub, Radoslav Ivanov, Oleg Sokolsky, and
Insup Lee. Contract-based Blame Assignment by Trace Analysis. In
Proceedings of HiICONS’13, the 2nd International Conference on High
Confidence Networked System.

Approach

When does an adverse event happen?

— Architectural support: e
medical device data o

logger for MDCF Seice. | Network Controller
—Detect adverse events ™\ & S ome
and device failures by Sl
comparing system L g [ resenes

execution logs to system model

How to define causality?

— Use counterfactual reasoning: if a device
failure were fixed and the system execution
would not trigger adverse event, then the
device failure is a necessary cause (analogously
for sufficient cause)

How to reason about causality?

— Symbolically “reconstruct” all possible system
executions and check against causality
definitions

— A fully automated process

Goal

Develop an approach for building safety cases for the
certification of on-demand medical CPS

e System: (a) whenever a<b, h must beT, (b) . .Cha."enges
g and h cannot both be T Safety system certification: the state of the art
e Coordinator:ifa>b:c=T,e=F; * considers the completely assembled system as a whole,

because safety is an emergent property

e acertified system needs to be re-certified if some of its
components are changed

else:c=Fe=T
* Laser Scalpel: g=d Ventilator: h =f
* Trace:{a—98, b—95,c—>F d—F e—T,
f—=T,g—>T, h—T}

Analysis: On-demand MCPS represents a new paradigm for
— System property violation occurred safety-critical systems
— Coordinator (C) and Laser Scalpel (L) faulty * the final system is assembled by the user instead of the

manufacturer

* how can we assure the system safety when we don't
know a priori what exact medical devices will be used

— If L outputs g = F to fix its own error, the
system violation disappears. So {L} is a
necessary cause for adverse events

— Similarly, {C} and {C, L} are necessary causes
too—then minimized to {C} and {L}

Safety Assurance of On-Demand MCPS

Our two-step approach

University of Pennsylvania

e Create a safety case template for an
APP at the design time

e [nstantiate the template and generate
a concrete safety case instance at the
system deployment phase
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