
AutoPlug: An Open Experimental Platform for Automotive
ECU Testing, Updates and Verification

Rahul Mangharam
Dept. Electrical & System Engineering

University of Pennsylvania
rahulm@seas.upenn.edu

ABSTRACT
In 2010, over 20.3 million vehicles were recalled. Software
issues related to automotive controls such as cruise control,
anti-lock braking system, traction control and stability con-
trol, account for an increasingly large percentage of the over-
all vehicles recalled. There is a need for new and scalable
methods to evaluate automotive controls in a realistic and
open setting. We have developed AutoPlug, an automo-
tive Electronic Controller Unit (ECU) test-bed to diagnose,
test, update and verify controls software. AutoPlug consists
of multiple ECUs interconnected by a CAN bus, a race car
driving simulator which behaves as the plant model and a
vehicle safety and performance monitor in Matlab. As the
ECUs drive the simulated vehicle, the physics-based simu-
lation provides feedback to the controllers in terms of accel-
eration, yaw, friction and vehicle stability. This closed-loop
platform is then used to evaluate multiple vehicle control
software modules such as traction, stability and cruise con-
trol. With this test-bed we are aim to develop ECU software
diagnosis and testing to evaluate the effect on the stability
and performance of the vehicle. Code updates can be ex-
ecuted via a smart phone so drivers may remotely “patch”
their vehicle. This closed-loop automotive control test-bed
allows the automotive research community to explore the
capabilities and challenges of safe and secure remote code
updates for vehicle recalls management.

Keywords
Real-time control systems, debugging, testing, verification

1. INTRODUCTION
In 2010, safety recalls affected 20.3 million vehicles, ac-

cording to the National Highway Traffic Safety Adminis-
tration (NHTSA). All together since 1966, when NHTSA’s
record of recalls begins, the industry has recalled more than
470 million vehicles. Over the past decade, software issues
in the automotive electronic controller units (ECUs) have
begun to account for an increasing larger share of the source
of recalls. Consider for example, in a 2009 defect notice filed
with the NHTSA, Volvo recalled 17,000 vehicles for the fol-
lowing software-related issue: “The engine cooling fan may
stop working due to a software programming error in the fan
control module.” In the short term, the problem could lead

USCAR Automotive CPS Workshop March 17–18, 2011, Troy, Michigan.
.

to “reduced air conditioning performance.” However, if not
corrected, it could lead to “loss of cooling system function
and engine failure. The driver may not have sufficient time
to react to the warning lights or the text message in the in-
strument panel, increasing the risk of a crash.” While such
critical recalls require vehicles to be repaired by the dealer-
ship, a large proportion of software related recalls may be
facilitated by remotely upgrading the software in the vehicle.

There is an urgent need for systematic analysis of software
bugs in automotive control systems, a system to remotely
diagnose the software on a set of ECUs, perform safe and
secure remote code updates and finally execute methods for
online testing and runtime verification for evidence-based
confirmation of the safety and efficacy of the code update.
Remote vehicle recalls management will initiate network-
wide preventive maintenance, provide an estimate the af-
fected population, deliver a means for continuous on-line
performance monitoring and potentially reduce the cost of
warranty management significantly.

2. POSITION
Software-related issues with automotive ECUs will con-

tinue to be a dominant reason for recalls in the future. The
cost of servicing these recalls by manually servicing each
vehicle significantly impacts the competitiveness of the au-
tomotive manufacturer. Furthermore, currently all vehicles
of the given make/year/model are recalled while the issue
may only affect a small percentage of the vehicles. There
is currently no means to distinguish the affected vehicles
from those that continue to be safe and efficient. There is,
therefore, an urgent need to explore remote warranty man-
agement and remote recalls servicing of software. This can
be accomplished by interfacing the vehicle’s computer to a
smartphone and running remote code diagnostics, code up-
dates/patches, testing and safety certification. While this
approach may not be applicable to the most critical issues,
it will be able to service non-critical and cabin control is-
sues. The proposed approach involves the following steps
(see Fig. 1):
1. Software Bug Detection When the automotive man-
ufacturer is alerted about a potential software issue in a
particular, a broadcast with a diagnostic test is sent to the
potentially affected vehicle owners. The code is loaded in a

Software Bug
Injection /
Detection

Online
Diagnostics

Remote
Code

Update

Runtime
Testing and
Verification

Figure 1: Remote ECU Recalls Management

Figure 2: AutoPlug system architecture

secure manner from the owner’s smartphone into the vehicle
via a WiFi gateway interfacing the vehicle’s computer.
2. Online Diagnostics The diagnostic code runs a set of
invasive and non-invasive tests which determine if the vehi-
cle is to be recalled or not.
3. Remote Code Updates If a recall is necessary, the
owner has the option to conduct the recall remotely by
downloading a patch for the ECU software. The patch is
applied automatically to the set of target ECUs.
4. Runtime testing and verification provide evidence
based proof that the applied patch is safe and does not vio-
late the properties of the affected ECUs.

3. RESEARCH CHALLENGES
With the above procedure, there are significant challenges

with ensuring that the communication and write actions to
the vehicle are safe and secure. As the onus of maintaining
safe software in the vehicle is on the manufacturer, there
must be both functional and formal approaches to guarantee
the safety of the system before, during and after the software
patch. We currently assume the patch will be applied only
when the vehicle is parked and the engine is off.

4. INNOVATIONS AND ABSTRACTIONS
We propose the early steps in creating an open-source au-

tomotive ECU test-bed to be used for the development of
new software processes to improve the warranty and recall
management of vehicles. This platform will help investigate
new automotive architectures for remote vehicle software
monitoring, testing and updates for more efficient vehicle
recalls management. We have created a network of ECUs
which implement control algorithms for anti-lock braking
system (ABS), traction control, stability control and cruise
control. In place of a real vehicle we have used The Open-
source Race Car Simulator (TORCS) which is a 3D driving
driving simulator that provides physics-based feedback to
the ECU network. A Nintendo Wii mote is used as a steer-
ing wheel to make it more interactive. Matlab is used to set
parameters and analyze the output.

5. SYSTEM ARCHITECTURE
As shown in Fig. 2, we have five Freescale HCS12 micro-

controller based ECUs connected through a 500Kbps CAN

Figure 3: AutoPlug ECU Test-bed Platform

bus. Their functions are listed below:

1. Engine control Module: Throttle Control, Auto Trans-
mission and Cruise Control.

2. Brake control Module: ABS, Traction Control, Stabil-
ity Control.

3. TORCS Module: Serial conversion and filtering of CAN
messages required for TORCS and driver input.

4. Telemetry Module: Serial conversion and filtering of
CAN messages required for graphing in MATLAB.

5. Hardware control Module: Drives a model car to repli-
cate the steering input and rear wheel speeds.

5.1 Race Car Plant Model
TORCS simulation features a simple damage model, col-

lisions, tire and wheel properties (springs, dampers, stiff-
ness,), aerodynamics (ground effect, spoilers,) and much
more. We used TORCS to get the required data such as in-
dividual wheel speeds, car speed, engine RPM, current gear,
yaw rate. By default, TORCS did not allow us to control
individual wheel brake pressures so we modified the source
code to enable it.

5.2 User Input
A Wii mote with a steering wheel was used to provide user

input over the CAN bus (acceleration, brake, steering angle,
gear, clutch and controls). The Wii mote interfaces with the
PC using Bluetooth. We used an open source library (wi-
iuse) for Linux which captured the button press and motion
events on Wii mote.

5.3 CAN messaging
Since we have distributed controls we need to ensure that

the messages have a priority based hierarchy. We took ad-
vantage of the arbitration mechanism of the CAN protocol
to ensure that the identifier fields of the higher priority mes-
sages will dominate the lower priority messages. More de-
tails on the message formats are on the http://autoplug.org.

6. AUTOMOTIVE CONTROLS
The test-bed is currently able to operate the vehicle with a

choice of stability control, traction control, anti-lock braking

Figure 4: Anti-lock Braking System OFF: Unmod-
ulated brakes result in high wheel slip

system and cruise control. We describe two of the above
features below.

6.1 Anti-lock Braking System
ABS tries to ensure that during braking the wheels of the

car do not lock (i.e. slip with respect to the ground) so we
try to match the wheel speeds with the linear speed of the
car during braking by modulating the brake pressure on the
wheels. ABS is implemented in the Brake Control Module.
A simple proportional control is implemented with a gain
of 20 and threshold of 3 m/s. The plots in Fig. 4 of the
wheel slip during braking show the effect of ABS off. With
the ABS switched on, the vehicle’s brakes are modulated to
minimize loss of traction due to wheel slip (see Fig. 5).

6.2 Traction Control
Traction control helps to maintain wheel traction with the

ground during acceleration and cornering. Again as in ABS
we try to match the wheel speeds with the linear car speed,
but here we modulate the throttle instead of the brake pres-
sure. We use proportional control with a gain of 20 and
threshold of 3 m/s. The traction control happens in the
Brake module ECU which sends a correction to the com-
puted acceleration in the Engine control ECU.

Other controls such as stability control and cruise control
were implemented

7. SAFE SOFTWARE UPDATE PROCEDURE
The test-bed is currently being used to evaluate software

testing and verification procedures for safe patching of con-
trols software on the ECUs. Each ECU runs the nano-
RK (http://nanork.org) real-time operating system (RTOS)
and is capable of executing tasks with a fixed period and
worst case execution time using the rate monotonic schedul-
ing (RMS) scheme or the earliest deadline first scheduling
(EDF) scheme. Tasks may be activated, terminated, sus-
pended at runtime by remote messaging over the CAN bus.
Furthermore, additions to the RTOS allow new tasks to be
issued over the CAN bus to monitor/replace/assist existing
tasks. This provides the basic mechanisms to apply code
updates.

Figure 5: Anti-lock Braking System ON: Brake
modulation reduces the wheel slip

We are able to introduce bugs in the controls software,
such as, time delays, sensor noise and parametric changes
to the proportional-integrative-derivative (PID) controller
algorithms on the ECUs. This results in unstable or less
responsive systems. We are then able to issue software tests
tailored to monitor the ECU at runtime. This provides feed-
back as to whether a software patch is necessary or not. The
patch is applied by migrating a task over the CAN bus to
the appropriate set of ECUs. We are currently able to exe-
cute runtime verification procedures to demonstrate that the
updated software maintains the safety and efficacy proper-
ties as intended. The platform will be made available to
the research community and the goal is for it to serve as an
experimental test-bench for future remote vehicle software
processes.

8. CONCLUSION
Automotive recalls due to software-related issues are on

the rise and will continue to affect a very large number of
vehicles. An open automotive ECU architecture is proposed
for use by the community at large. This will facilitate new
and efficient methods to detect, diagnose, update, test and
verify automotive ECU software.

9. BIOGRAPHY
Rahul Mangharam is the Stephen J Angello Chair and

Assistant Professor in the Dept. of Electrical and Systems
Engineering and Dept. of Computer and Information Sci-
ence at the University of Pennsylvania. He directs the Real-
Time and Embedded Systems Lab at Penn. His interests are
in real-time scheduling algorithms for networked embedded
systems with applications in automotive systems, medical
devices and industrial control networks.

