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§  Deficient or inaccurate specifications can impede both  
system development, as well as effective and safe usage  
of the system once it is deployed 

§  System is usually most up to date artifact 
§  Can we learn specifications from system? 

§  Applied it to several automotive/medical control system models.  
§  Extracted specifications lined up very well with existing requirements 
§  Currently working on larger study with pacemaker models from 

UPenn CyberCardia team 
§  Expanding tool for systems implemented in C 
 
 
 

AUTOMATED SPECIFICATION EXTRACTION 

The Inspector helps domain  
experts to analyze the extracted  
specifications: 
•  Options for searching and  

filtering of the specifications 
•  Comparison of specifications  

from different versions of the 
system to identify deviations 

PROBLEM 

APPROACH 

RESULTS & ONGOING WORK 
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COMPOSITIONAL, APPROXIMATE, AND QUANTITATIVE 
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Specification Inspector Automated Specification Extraction 

Input:  
Simulink Models 

Output:  
System Invariants 

We developed framework and associated tooling for the extraction of 
system invariants for Simulink models from test data that has been 
automatically generated from automated executions of the models.  
 
Our framework follows a test -> infer -> instrument -> retest paradigm.  
•  The test data is generated by an automated coverage testing tool for Simulink 

models called Reactis*. Reactis tries to execute large parts of the systems 
behavior by targeting 
coverage metrics such as Branch/Condition/MCDC coverage 

•  Association rule** mining is used to infer invariants from the collected test data 
•  In order to validate the invariants, the system models are instrumented with 

monitoring logic that checks whether proposed invariants are being maintained 
•  The test generation process is then applied to the instrumented system to 

generate a new set of tests that actively try to find counterexamples to the 
invariants, thereby either disproving them, or strengthening the confidence in 
them. Additional test cases can also find new invariants that were missed in a 
previous iteration.  

•  This iterative process is performed several times, until no new invariants are 
found, and no old ones have been invalidated.  

•  The resulting invariants of are then proposed as actual behaviors of the system. 
 *  Reactis, http://www.reactive-systems.com/ 

**  SPMF, http://www.philippe-fournier-viger.com/spmf/ 

TESTING OF AUTONOMOUS 
SYSTEMS PROBLEM 

§  Increasing interest in using autonomous systems in safety critical applications 
§  Machine learning and non-deterministic control algorithms make it hard or 

impossible to verify the safety of these systems 
§  The state space is infinite so testing everything is impossible 

APPROACH 

§  Define a model of the operating environment and generate a large number 
of simulated test cases 

§  Record the state of the system and identify points where behavior or 
“decisions” change 

§  Expect small changes in the scenario to lead to small changes in behavior 
§  Observing reliable and stable behavior increases trust in the system 

Combine ideas from metamorphic and model-based testing 

Drone test bed 
§  Simulated quad-copter with lidar and cameras for 

navigation 
§  Autonomously navigate from A to B and avoid 

obstacles on the way 
§  Testing variations of a simple mission reveals 

edge cases and unstable behavior 
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FUTURE WORK 
§  Define language/format for autonomy requirements 
§  Smarter test generation. Generate more variations for scenarios where behavior 

is unstable 
 


