
Diagram/
Picture

Diagram/
Picture

Diagram/
Picture

Diagram/
Picture

	

Contact : Mikael L indva l l , mik l i@cese. f raunhofer.org
	

§  Deficient or inaccurate specifications can impede both
system development, as well as effective and safe usage
of the system once it is deployed

§  System is usually most up to date artifact
§  Can we learn specifications from system?

§  Applied it to several automotive/medical control system models.
§  Extracted specifications lined up very well with existing requirements
§  Currently working on larger study with pacemaker models from

UPenn CyberCardia team
§  Expanding tool for systems implemented in C

AUTOMATED SPECIFICATION EXTRACTION

The Inspector helps domain
experts to analyze the extracted
specifications:
•  Options for searching and

filtering of the specifications
•  Comparison of specifications

from different versions of the
system to identify deviations

PROBLEM

APPROACH

RESULTS & ONGOING WORK

CPS: FRONTIER: COLLABORATIVE RESEARCH:
COMPOSITIONAL, APPROXIMATE, AND QUANTITATIVE
REASONING
FOR MEDICAL CYBER-PHYSICAL SYSTEMS (CYBERCARDIA)
NSF AWARD#: 1446583

Specification Inspector Automated Specification Extraction

Input:
Simulink Models

Output:
System Invariants

We developed framework and associated tooling for the extraction of
system invariants for Simulink models from test data that has been
automatically generated from automated executions of the models.

Our framework follows a test -> infer -> instrument -> retest paradigm.
•  The test data is generated by an automated coverage testing tool for Simulink

models called Reactis*. Reactis tries to execute large parts of the systems
behavior by targeting
coverage metrics such as Branch/Condition/MCDC coverage

•  Association rule** mining is used to infer invariants from the collected test data
•  In order to validate the invariants, the system models are instrumented with

monitoring logic that checks whether proposed invariants are being maintained
•  The test generation process is then applied to the instrumented system to

generate a new set of tests that actively try to find counterexamples to the
invariants, thereby either disproving them, or strengthening the confidence in
them. Additional test cases can also find new invariants that were missed in a
previous iteration.

•  This iterative process is performed several times, until no new invariants are
found, and no old ones have been invalidated.

•  The resulting invariants of are then proposed as actual behaviors of the system.
 * Reactis, http://www.reactive-systems.com/

** SPMF, http://www.philippe-fournier-viger.com/spmf/

TESTING OF AUTONOMOUS
SYSTEMS PROBLEM

§  Increasing interest in using autonomous systems in safety critical applications
§  Machine learning and non-deterministic control algorithms make it hard or

impossible to verify the safety of these systems
§  The state space is infinite so testing everything is impossible

APPROACH

§  Define a model of the operating environment and generate a large number
of simulated test cases

§  Record the state of the system and identify points where behavior or
“decisions” change

§  Expect small changes in the scenario to lead to small changes in behavior
§  Observing reliable and stable behavior increases trust in the system

Combine ideas from metamorphic and model-based testing

Drone test bed
§  Simulated quad-copter with lidar and cameras for

navigation
§  Autonomously navigate from A to B and avoid

obstacles on the way
§  Testing variations of a simple mission reveals

edge cases and unstable behavior

Landing	Pad	

Drone	

Obstacles	

FUTURE WORK
§  Define language/format for autonomy requirements
§  Smarter test generation. Generate more variations for scenarios where behavior

is unstable

