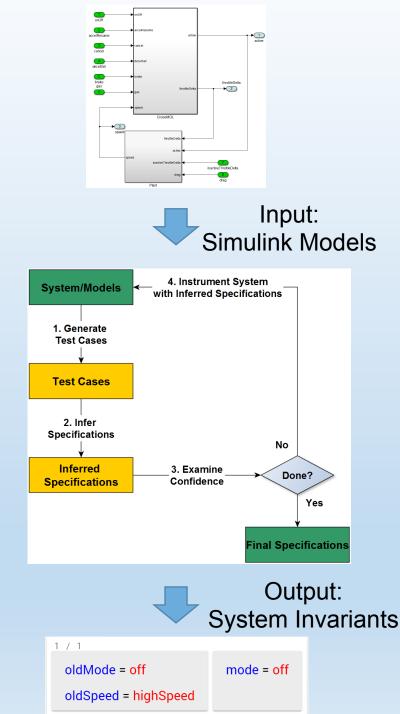


Center for Experimental Software Engineering


AUTOMATED SPECIFICATION EXTRACTION

PROBLEM

- Deficient or inaccurate specifications can in system development, as well as effective ar of the system once it is deployed
- System is usually most up to date artifact
- Can we learn specifications from system?

APPROACH

Automated Specification Extraction

We developed framework and associated tooling for system invariants for Simulink models from test data automatically generated from automated executions

- Our framework follows a test -> infer -> instrument -> retest pa The test data is generated by an automated coverage testir models called Reactis*. Reactis tries to execute large parts behavior by targeting
- coverage metrics such as Branch/Condition/MCDC coverage Association rule** mining is used to infer invariants from the
- In order to validate the invariants, the system models are ir monitoring logic that checks whether proposed invariants a
- The test generation process is then applied to the instrume generate a new set of tests that actively try to find countered invariants, thereby either disproving them, or strengthening them. Additional test cases can also find new invariants that previous iteration.
- This iterative process is performed several times, until no n found, and no old ones have been invalidated.

 The resulting invariants of are then proposed as actual beh Reactis, http://www.rea

** SPMF. http://www.philig

RESULTS & ONGOING WORK

- Applied it to several automotive/medical con
- Extracted specifications lined up very well w
- Currently working on larger study with pacen
- UPenn CyberCardia team
- Expanding tool for systems implemented in C

CPS: FRONTIER: COLLABORATIVE RESEARCH: COMPOSITIONAL, APPROXIMATE, AND QUANTITATIVE REASONING FOR MEDICAL CYBER-PHYSICAL SYSTEMS (CYBERCARDIA) **NSF AWARD#: 1446583**

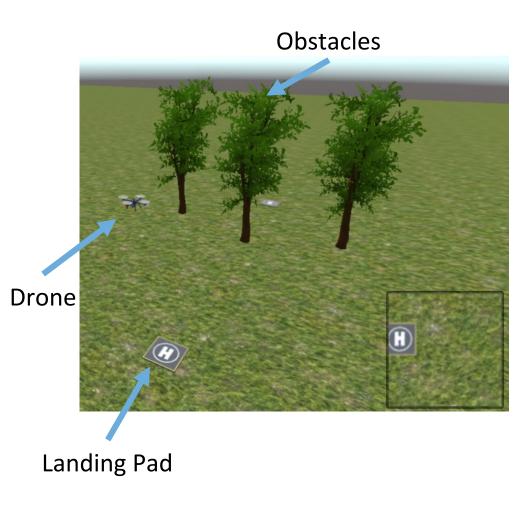
mpede bo Ind safe ι m	M = odel/system	
	satisfies / possesses xample Specification: <i>f the speed is too low the cruise control shall be off"</i>	AF
r the extraction of a that has been s of the models. aradigm. ng tool for Simulink of the systems ge collected test data <i>strumented</i> with re being maintained nted system to xamples to the the confidence in t were missed in a ew invariants are aviors of the system.	<text><text><list-item><list-item></list-item></list-item></text></text>	
pe-fournier-viger.com/spr	n models. requirements a state_1 b m	F

Contact: Mikael Lindvall mikli@cese fraunhofer ord

TESTING OF AUTONOMOUS

ROBLEM

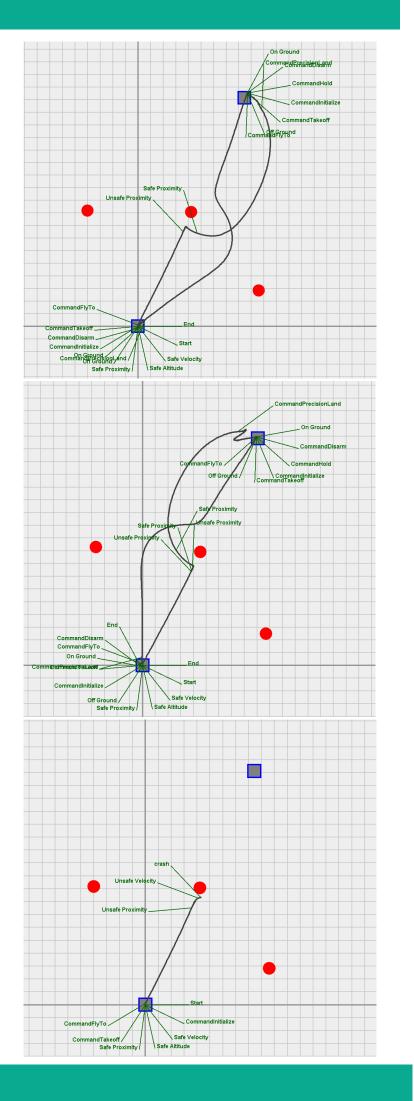
Increasing interest in using autonomous systems in safety critical applications Machine learning and non-deterministic control algorithms make it hard or impossible to verify the safety of these systems The state space is infinite so testing everything is impossible


PROACH

ombine ideas from metamorphic and model-based testing

- Define a model of the operating environment and generate a large number of simulated test cases
- Record the state of the system and identify points where behavior or "decisions" change
- Expect small changes in the scenario to lead to small changes in behavior
- Observing reliable and stable behavior increases trust in the system

rone test bed


- Simulated quad-copter with lidar and cameras for navigation
- Autonomously navigate from A to B and avoid obstacles on the way
- Testing variations of a simple mission reveals edge cases and unstable behavior

JTURE WORK

Define language/format for autonomy requirements Smarter test generation. Generate more variations for scenarios where behavior is unstable

