AUTOMOTIVE CPS ARCHITECTURE

Tom Fuhrman GM R&D

NSF CPS Reference Architecture Workshop March 26, 2014

GENERAL MOTORS

AUTOMOBILE INDUSTRY CHALLENGES

Challenges	Stretch Goals	Required Technologies Enablers/Inventions
Energy Emissions	High-efficiency vehicles using low-cost renewable energy No tailpipe environmental impact	 Bio/alternative fuels Propulsion efficiencies Light weighting Aerodynamics Tire rolling resistance Electrification
Safety Congestion	Vehicles that don't crash Autonomous driving Congestion-free routing Megacity parking	 Electronics, Controls, Software & Networks 360° sensors GPS + digital maps Vehicle Connectivity High Computation
Affordability	"Personal mobility for every purse and purpose"	 Manufacturing & vehicle system/component cost

GENERAL MOTORS

THE BIG PICTURE - LAYERS OF ABSTRACTION

LIFECYCLES OF ARCHITECTURES

INTER-RELATIONSHIPS BETWEEN ARCHITECTURES

FUNCTIONAL ARCHITECTURE

PHYSICAL ARCHITECTURE (NETWORK TOPOLOGY)

SOFTWARE ARCHITECTURE

ARCHITECTURE METAMODELS

ARCHITECTURE DECISION POINTS

Structure of network connectivity Integration type (domain, geographic, etc.) Fault tolerance strategy Level of intelligence of sensors & actuators Development / sourcing (separate HW/SW vs. black-box) Dynamically reconfigurable architecture Power generation/storage/distribution strategy Discrete vs. multiplexed sensors & actuators Wired / fiber vs. wireless Degree of separation of I/O processing from control processing Federated vs. integrated (degree of Mixed-IP) Centralized vs. decentralized control Post manufacture update strategies Number of architecture families (one / few / many) End-of-line programming strategy (cals only, all code, mixture)

```
GENERAL MOTORS
```

10

(...and 10 others...)

11

13

INTEGRATION TYPE

Functionality (domain)Geographic location (zone)Power modeIP sourceSafety criticalityOBD (on-board diagnostics) regulations

FAULT TOLERANT ARCHITECTURE

FAULT TOLERANT ARCHITECTURE

GENERAL MOTORS

ARCHITECTURE METRICS

Metrics	Definition	
Reliability /	The ability of the system to perform intended/specified function satisfactorily for	
Quality	a prescribed time and under stipulated environmental conditions.	
Energy Efficiency The net electrical power consumed when no system is running, when a partial		
	network is running, and when all systems are running (operational).	
Safety	Failure probability of critical event to attain freedom from unacceptable risk for	
	personal goods (EASIS)	
Cost	The net monetary cost for design/development, manufacturing, vehicle	
	integration and ownership (including repair/maintenance).	
Scalability	The ability to accommodate anticipated changes in hardware resources.	
Flexibility	The ability to accommodate changes in features without any changes in	
	hardware resources.	
Reusability	The degree to which components are adapted to support different products	
	(multiple Architecture variants) in the product line.	
Expandability	The ability to accommodate unanticipated changes in hardware resources.	
Maintainability/	The ability to restore a failed system to an operational effective condition within	
Diagnosability	a given period of time through repair and corrective action.	
Vehicle	The ability to perform basic vehicle operations in case of specific failure	
Availability	scenarios	
Security	The ability to prevent unauthorized access to, or handling of, system state.	
Timing	The ability of the system to ensure timely computation and communication.	
Mass	The weight of the components in a design.	
Integrity	The ability to prevent improper system alterations.	
Complexity	An assessment of intricacies in a design.	
Packagability	A measure of the freedom to place/style/redistribute hardware resources inside	
	a vehicle.	
Backwards	The alignment of the design to historical data including past designs, data sets,	
Compatibility	code, supplier relations, tool availability etc.	
Organizational	The alignment of the design to organization for design, development and	
Alignment	integration.	

GENERAL MOTORS

18

VEHICLE CONNECTIVITY

FUTURE AUTOMOTIVE ARCHITECTURE TRENDS & CHALLENGES

Up-integration of features and functions into a reduced number of nodes

Fault-tolerance and fail-operational

Cyber-security

Energy efficiency

Mass reduction

Asymmetric redundancy (hardware, software, allocation)

AVB Ethernet with time synchronization, ring topology for redundancy

Consumer electronics pace of technology evolution

```
GENERAL MOTORS
```

THANK-YOU!

Questions?

GENERAL MOTORS

21