Bifurcation Analysis of Cardiac Alternans using δ-Decidability

PI: Frank Pfenning, Edmund Clarke, and Sicun Gao Presenter: Md Ariful Islam
Department of Computer Science, Carnegie Mellon University
CyberCardia
Award\# CNS-1446725

MITCHELL-SCHAEFFER (MS) MODEL

FORMAL DEFINITION OF ALTERNANS
Given,
σ : (possibly infinite)
voltage signal
$\tau_{1}>0$ and $\tau_{2}>0$: APDs two consecutive AP cycles where
$r=\tau_{2} / \tau_{1}$

σ exhibits: alternans (non-alternans) with respect to $r_{\text {th }}$ when $|r-1|>r_{\text {th }}$
($|r-1| \leq r_{t h}$) is invariant

OBSERVER AUTOMATON FOR ALTERNANS: $H_{o l}$

PRODUCT AUTOMATON FOR ALTERNANS: H_{A}

PRODUCT AUTOMATON FOR NON-ALTERNANS: H_{N}

BIFURCATION ANALYSIS USING δ-DECIDABILITY

- Parameter (τ) Synthesis problem on H_{A} and H_{N} : Augment both HA with $\dot{\tau}=0$, where parameter range, $\mathrm{R}_{\tau}=[\underline{\tau}, \bar{\tau}]$
Subrange $S_{\tau} \subseteq R_{\tau}$ produces alternans (nonalternans), if $\forall \tau \in \mathrm{S}_{\tau}$, goal state of $H_{N}\left(H_{A}\right)$ is not reachable
- Bifurcation Analysis using dReach:

Can not compute exact BPs (Undecidable problem)
Instead, by applying a recursive search procedure and refining δ on dReach, computes small intervals (URs) such that each one contains a BP. Additionally, it computes alternans (AR) and non-alternans (NR) regions
In search procedure, parameter synthesis problem is solved recursively on current subrange until d Reach label the subrange as AR or NR or it becomes smaller than current δ on dReach
 based Analysis

(b) Recursive search in action

REFERENCES

1. C. C. Mitchell and D. G. Schaeffer. A two-current model for the dynamics of cardiac membrane. Bulletin of mathematical biology, 65(5):767-793, 2003
2. S. Kong, S. Gao, W. Chen, and E. M. Clarke. dReach: δ reachability analysis for hybrid systems. In Tools and Algorithms for the Construction and Analysis of Systems - 21 st International
Conference, TACAS, London, UK, April 11-18, 2015.
3. S. Gao, S. Kong, W. Chen, and E. M. Clarke. Delta-complete analysis for bounded reachability of hybrid systems. CoRR, abs/1404.7171, 2014.
