Bootstrapping robotic sensorimotor cascades

Andrea Censi（G4）Richard M．Murray

The problem
－Can an agent learn to use any sensorimotor cascade（set of sensors and actuators）from scratch， with no prior information about them？
We call this problem＂bootstrapping＂
－The agent＂wakes up＂connected to streams of uninter－ preted observations and uninterpreted commands．
－The agent must obtain a model of its own body，and use the model to perform a useful task．

Motivation

Major challenges
－High dimensionality of the data；we
aim for processing raw sensory streams．
－Highly nonlinear nuisances corrupt－
ing the data（e．g．，diffeomorphism，per－
mutations）．

This makes classical techniques of
system identification not applicable．

－Behaviorally－relevant state／features
often not directly observable．
This makes most techniques from machine learning not applicable． Creating stateful representations
is a major challenge of bootstrap is a major challenge of bootstrapping．
－Nature gives a proof of existence that a so－
lution exists which uses simple and slow computation．

Our approach
－Obtain formal results in the style of control theory．
－Design methods implementable
with slow computing and bio－ with slow computing and
plausibe computation．
－Study intrinsic tasks that are independent of the sensors an
actuators（e．g．，＂servoing＂）．
－Design methods that work for a wide range of sensorimotor cas cades，parameter－free．

Is bootstrapping equivalen to the full AI problem？
Hopefully not！
While an agent that could solve the bootstrapping problem doos display
some of the attributes of intelligence some of the attributes of intelligence，
this would be closer to＂animal intelli－ gence＂rather than human－level AI．

But isn＇t bootstrapping also．．．？
Yes！It is a huge problem with many different as－ pects to it，and it is at the intersection of many pects to it，and it is at the
We are focusing on a few aspects related to low－ level sensorimotor interaction，that we believe ready for a rigorous formalization and solution．

Necessary invariance properties of bootstrapping agents

What does it mean that an
agent uses＂uninterpreted＂ agent uses＂uninterpreted＂
observations and commands？
－We show that this can be formal－ ized by positing the existence of representation nuisances that
act on the data，and which must be tolerated by an agent．
－The classes of nuisances toler ated indirectly encode the as sumptions of the agents．
－The behavior of an optimal agent must be invariant to the representation nuisance

The uncertain semantics of observations and commands is represented by group actions acting on the signals（diffeomorphisms，per－ mutations，etc．）that change the representa－ tion but preserve the information．

An optimal agent must compensate those nuisances，as they do not change observabil－ ity and controllability of the system．

Bootstrapping bilinear models
of robotic sensorimotor cascades

Can we find a

unified representation of sensorimotor cascades？
－We consider sensorimotor cascades composed by omnidirectional kinematics and three＂canonical＂exteroceptive sensors：field samplers，range－
finders，and cameras．
finders，and cameras．
－We study bilinear dynamics such cascades．
－We design an agent that can learn such models and use them for solving the same task（servoing）for any sensor．
－We approach the problem from a con－ trol theory perspective，with the aim of
obtaining strong theoretical results．

略点复
Appeared
in ICRA 2011

We use bilinear dynamics sensors（BDS）as a We use bilinear dynamics sensors（BDS）as a
general representation for sensorimotor cas－

$$
\dot{y}^{s}=\mathrm{M}_{v i}^{s} y^{v} u^{i}
$$

A system with nobservations and k commands A system with n observations and k com
is represented by k tensors of size (n, n) ．

Towards more efficient models
（bilinear gradient dynamics）
－BDS models（studied in the ICRA＇11 paper）have quadratic
complexity in the number of complexit．
sensels．
－BGDS models are a subclass in which the dynamics depend on the
tions．
－Assumptions verified for the －Assumptions verified for the
three＂canonical＂sensors（camera， three canonical sensors（cal
range－finder，field sampler）．
－This makes it possible to feed the model the raw sensory streams from real robotic platforms and
use massively parallel and slow computing．

