
uninterpreted
observations

uninterpreted
commands

unknown
actuator(s)

unknown
sensor(s)

external
world

agent

“world”

3

Equations (1)-(2) appear convoluted because they work with
the much abstract definition of system we used. However,
the end result is that we have defined the meaning of a
transformation D �→ h ·D · g; reading right to left, the input
signals are filtered by the group element g; then the system
produces an output, which is filtered according to the group
element h.

C. Defining agents
In the following, we let U be the command space, Y be

the observations space, and world ∈ D(Y,U) represent the
model of everything in between observations and commands.
To formalize the learning agent, we assume that it is composed
of a two-part strategy. The first part consists in learning a
representation of the world (more or less explicit); and in the
second phase, using this representation to do something (or to
estimate something). We model the agent as a tuple of two
functions modeling learning and action.

Definition 4. A bootstrapping agent for a world world ∈
D(Y,U) is a tuple 〈R, learn, act〉 such that R is the represen-
tation space, learn ∈ D(U × R,Y) is the learning/exploration
strategy; and act : R → D(U ,Y) is the action/estimation
phase. We denote by learn(world) = r ∈ R the representation
learned after a suitable training phase. We define as A(U ,Y)
the set of all agents interacting with the world through
commands in U and observations Y .

The learning strategy is defined as an element of D(U ×
R,Y), which means it is a dynamical system which has as
input the observations (Y), and as output the commands (U)
that drive the exploration, and the internal representation (R).
In this paper, we treat the representation mostly as an opaque
object.

The acting strategy act is a map from R to D(U ,Y); this
means that the learned representation R is converted into a
dynamical system which will do the actual interacting with the
world. We remark that this dynamical system has, in general,
an internal state. For example, R might include a description
of the sensor calibration and the statistics of the environment;
from that, one generates the dyamical system act(R) which
might include logic for estimation of an internal state (e.g. the
agent’s state in localization, or a complete map in SLAM)1.
Note also that using the abstract Definition 1 does not exclude
any kind randomized behavior for the agent.

Finally, notice that in this discussion we are neglecting all
sorts of problems about how to properly define the training
phase; when to stop it; the tradeoff of exporation/explotation;
etc. All these concerns are important but somewhat orthogonal
to our main interest.

D. Bootstrapping as invariance to the group actions
We have defined the world, the agent, and how the world

transforms under group nuisances. At this point, we can
1Depending on the field, “learning” is sometimes equivalent to “estimation”

(as in learning a map of the environment). In this paper, we use “learning” for
the problem of deriving what we call “representation” of the world dynamics,
and use “estimation” for inferring the state of system, given a known dynamics
(these ideas blur into each other, but it makes sense to use “learning” for the
harder problem).

introduce the main theoretical point of this paper: it is possible
to transform vague constraints such as “the agent has no
assumptions on the model” into precise algebraic conditions
on the world-agent loop; specifically, an agent does not
need certain information if its behavior is invariant to group
nuisances acting on the world that destroy that particular
information. The following is the formal statement.

Definition 5. Let the world world belong to a family of models
W ⊂ D(T,U ,Y). Let the groups GU , GY be left and right
actions on the world world. We say that an agent 〈R, learn, act〉
is invariant to the action of (GU ,GY) for the family W if

(act ◦ learn)(h · world · g) = g−1 · (act ◦ learn)(world) · h−1

for all h ∈ GY , g ∈ GU , and world ∈ W.

It is easy to see that, if this condition holds, then the
nuisances have no effect on the agent’s actions (g−1 and g
cancel, and likewise for h). The simplest example is when the
groups represent linear scaling (gains of the actuators, or units
of measuremnts for the observations); if the gain is doubled,
we expect that the produced commands will be halved.

Note also that, while the input-output behavior is un-
changed; the internal representation is allowed to change; what
happens to the internal representation is an interesting question
that we will not investigate in this paper.

III. ANALYSIS FOR BDS SYSTEMS

The point of all of this is that now we have a language to
say exactly what we require of a bootstrapping agent. Here we
apply it to the results in previous work, as a simple example
in preparation to the new results described later.

In previous work, we considered this class of bilinear
models, justifying the choice by saying that it is the simplest
nonlinearity that can represent several sensors. There is some
similarity with other systems considering 3-way interactions
of systems that we intend to investigate in the future [?].

Definition 6. A bilinear dynamics sensor (BDS) if its sensor
y ∈ Rn, u ∈ Rk dynamics, and there exists a (n, n×k) tensor
M such that ẏs = Ms

viy
vui.

We call BDS(n, k) the set of all such systems. Note that
here, in the discrete case, s is an index that spans over 1, . . . , n
sensels; but most considerations are valid if s is a continuous
index over a manifold, with integration instead of summation.
Writing the system in the form ẏ = (M:

:1y)u
1 + (M:

:2y)u
2 +

. . . . makes it clear that the system being bilinear means having
multiple autonomous linear dynamics among which to choose.
A purely affine part (ẏ = · · · + Bu) can be represented by
adding a dummy observation with constant value.

The following is an extension of the agent we studied in
previous work with the language just introduced. Suppose Ωu

is the set of allowable commands (modeling power constraints
etc.).

Proposition 7. Define the agent ABDS(k, n) ∈ A(Rk,Rn),
with representation

〈
ys,Psv,Tsvi

〉
. The learning phase is de-

fined by the following set of equations. The actions are chosen

3

Equations (1)-(2) appear convoluted because they work with
the much abstract definition of system we used. However,
the end result is that we have defined the meaning of a
transformation D �→ h ·D · g; reading right to left, the input
signals are filtered by the group element g; then the system
produces an output, which is filtered according to the group
element h.

C. Defining agents
In the following, we let U be the command space, Y be

the observations space, and world ∈ D(Y,U) represent the
model of everything in between observations and commands.
To formalize the learning agent, we assume that it is composed
of a two-part strategy. The first part consists in learning a
representation of the world (more or less explicit); and in the
second phase, using this representation to do something (or to
estimate something). We model the agent as a tuple of two
functions modeling learning and action.

Definition 4. A bootstrapping agent for a world world ∈
D(Y,U) is a tuple 〈R, learn, act〉 such that R is the represen-
tation space, learn ∈ D(U × R,Y) is the learning/exploration
strategy; and act : R → D(U ,Y) is the action/estimation
phase. We denote by learn(world) = r ∈ R the representation
learned after a suitable training phase. We define as A(U ,Y)
the set of all agents interacting with the world through
commands in U and observations Y .

The learning strategy is defined as an element of D(U ×
R,Y), which means it is a dynamical system which has as
input the observations (Y), and as output the commands (U)
that drive the exploration, and the internal representation (R).
In this paper, we treat the representation mostly as an opaque
object.

The acting strategy act is a map from R to D(U ,Y); this
means that the learned representation R is converted into a
dynamical system which will do the actual interacting with the
world. We remark that this dynamical system has, in general,
an internal state. For example, R might include a description
of the sensor calibration and the statistics of the environment;
from that, one generates the dyamical system act(R) which
might include logic for estimation of an internal state (e.g. the
agent’s state in localization, or a complete map in SLAM)1.
Note also that using the abstract Definition 1 does not exclude
any kind randomized behavior for the agent.

Finally, notice that in this discussion we are neglecting all
sorts of problems about how to properly define the training
phase; when to stop it; the tradeoff of exporation/explotation;
etc. All these concerns are important but somewhat orthogonal
to our main interest.

D. Bootstrapping as invariance to the group actions
We have defined the world, the agent, and how the world

transforms under group nuisances. At this point, we can
1Depending on the field, “learning” is sometimes equivalent to “estimation”

(as in learning a map of the environment). In this paper, we use “learning” for
the problem of deriving what we call “representation” of the world dynamics,
and use “estimation” for inferring the state of system, given a known dynamics
(these ideas blur into each other, but it makes sense to use “learning” for the
harder problem).

introduce the main theoretical point of this paper: it is possible
to transform vague constraints such as “the agent has no
assumptions on the model” into precise algebraic conditions
on the world-agent loop; specifically, an agent does not
need certain information if its behavior is invariant to group
nuisances acting on the world that destroy that particular
information. The following is the formal statement.

Definition 5. Let the world world belong to a family of models
W ⊂ D(T,U ,Y). Let the groups GU , GY be left and right
actions on the world world. We say that an agent 〈R, learn, act〉
is invariant to the action of (GU ,GY) for the family W if

(act ◦ learn)(h · world · g) = g−1 · (act ◦ learn)(world) · h−1

for all h ∈ GY , g ∈ GU , and world ∈ W.

It is easy to see that, if this condition holds, then the
nuisances have no effect on the agent’s actions (g−1 and g
cancel, and likewise for h). The simplest example is when the
groups represent linear scaling (gains of the actuators, or units
of measuremnts for the observations); if the gain is doubled,
we expect that the produced commands will be halved.

Note also that, while the input-output behavior is un-
changed; the internal representation is allowed to change; what
happens to the internal representation is an interesting question
that we will not investigate in this paper.

III. ANALYSIS FOR BDS SYSTEMS

The point of all of this is that now we have a language to
say exactly what we require of a bootstrapping agent. Here we
apply it to the results in previous work, as a simple example
in preparation to the new results described later.

In previous work, we considered this class of bilinear
models, justifying the choice by saying that it is the simplest
nonlinearity that can represent several sensors. There is some
similarity with other systems considering 3-way interactions
of systems that we intend to investigate in the future [?].

Definition 6. A bilinear dynamics sensor (BDS) if its sensor
y ∈ Rn, u ∈ Rk dynamics, and there exists a (n, n×k) tensor
M such that ẏs = Ms

viy
vui.

We call BDS(n, k) the set of all such systems. Note that
here, in the discrete case, s is an index that spans over 1, . . . , n
sensels; but most considerations are valid if s is a continuous
index over a manifold, with integration instead of summation.
Writing the system in the form ẏ = (M:

:1y)u
1 + (M:

:2y)u
2 +

. . . . makes it clear that the system being bilinear means having
multiple autonomous linear dynamics among which to choose.
A purely affine part (ẏ = · · · + Bu) can be represented by
adding a dummy observation with constant value.

The following is an extension of the agent we studied in
previous work with the language just introduced. Suppose Ωu

is the set of allowable commands (modeling power constraints
etc.).

Proposition 7. Define the agent ABDS(k, n) ∈ A(Rk,Rn),
with representation

〈
ys,Psv,Tsvi

〉
. The learning phase is de-

fined by the following set of equations. The actions are chosen

Bootstrapping robotic sensorimotor cascades

Motivation

Andrea Censi (G4) Richard M. Murray

Can we find a
unified representation
of sensorimotor cascades?

• We consider sensorimotor cascades
composed by omnidirectional kinematics
and three “canonical” exteroceptive
sensors: field samplers, range-
finders, and cameras.

• We study bilinear dynamics
systems as generic approximators for
such cascades.

• We design an agent that can learn such
models and use them for solving the same
task (servoing) for any sensor.

• We approach the problem from a con-
trol theory perspective, with the aim of
obtaining strong theoretical results.

• BDS models (studied in the
ICRA’11 paper) have quadratic
complexity in the number of
sensels.

• BGDS models are a subclass in
which the dynamics depend
on the gradient of the observa-
tions.

• Assumptions verified for the
three “canonical” sensors (camera,
range-finder, field sampler).

• This makes it possible to feed the
model the raw sensory streams
from real robotic platforms and
use massively parallel and
slow computing.

• Currently, robotics research is quite unbalanced towards the left;
we design methods that rely on very precise models of sensors and
actuators.

• However, it is unrealistic to rely on accurate modeling of complex
systems; models change and fail, and this makes systems unreliable.

• Eventually, we will realize that to obtain reliable robots
we should focus on methods that obtain satisfactory results
minimizing the prior information requirements.

• Bootstrapping is what we obtain when we take this principle to the
extreme: can we design behaviors with absolutely zero prior infor-
mation?

Major challenges
• High dimensionality of the data; we
aim for processing raw sensory streams.

• Highly nonlinear nuisances corrupt-
ing the data (e.g., diffeomorphism, per-
mutations).

This makes classical techniques of
system identification not applicable.

Our approach

• Obtain formal results in the
style of control theory.

• Design methods implementable
with slow computing and bio-
plausible computation.

What does it mean that an
agent uses “uninterpreted”
observations and commands?

• We show that this can be formal-
ized by positing the existence of
representation nuisances that
act on the data, and which must be
tolerated by an agent.

• The classes of nuisances toler-
ated indirectly encode the as-
sumptions of the agents.

• The behavior of an optimal
agent must be invariant to the
representation nuisances.

 Award # 0931746

Is bootstrapping equivalent
to the full AI problem?

Hopefully not!
While an agent that could solve the
bootstrapping problem does display
some of the attributes of intelligence,
this would be closer to “animal intelli-
gence” rather than human-level AI.

unknown
actuator(s)

unknown
sensor(s)

external
world

group nuisance
on commands

agent

“world”

X X

group nuisance
on observations

∈ GY ,

·

∈ GU ,

y R , u

unknown
actuator(s)

unknown
sensor(s)

external
world

group nuisance
on commands

agent

“world”

X X

group nuisance
on observations

∈ GY ,

·

∈ GU ,

y R , u

If we assume that u is a symmetric velocity commands,
in the sense that applying +u gives the opposite effect of
applying −u, then we can get rid of the E(u,u) term as
well. We are left with the model ẏ = Bu+D(y,u), where D
is a bilinear operator. We can incorporate Bu into the second
term by assuming there is a trivial observation whose value
is always 1. In conclusion, our ansatz for a generic robotic
sensor is a bilinear model of the kind ẏ = D(y,u).

Definition 1. A sensor is a bilinear dynamics sensor (BDS),
for a certain choice of control commands u, if the derivative
of y depends linearly on u and y. In formulas, there exists
a (1,2) tensor M such that

ẏs = Ms
viy

vui. (II.2)

Bootstrapping and servoing with BDS: As explained in the
introduction, the task we focus is servoing/homing (Prob-
lem I.1). The solutions we study are two-part strategies,
composed by a learning and a control phase. In the first
learning phase, the agent builds a representation of its
sensorimotor cascade. Then, the agent uses the representation
it has built to solve the task during the action phase.

In the learning phase, the agent randomly samples control
commands u from any zero-mean distribution with positive
definite covariance. Meanwhile, it estimates three quantities:
the average observation at each sensel y:

ys = E{ys}, (II.3)

the (2, 0) covariance tensor P:

Psv = cov(ys, yv), (II.4)

and the (3, 0) tensor T defined by

Tsvi = E{(ys − ys) ẏvui}. (II.5)

These expectations can be computed online. For example:

ys(k + 1) =
k

k + 1
ys(k) +

1

k + 1
ys(k).

We note that these computations can be implemented on a
neural architecture; equation (II.5) is similar to three-way
Hebbian learning between y, ẏ, and u.

The following proposition establishes that the tensor T,
tends to approximate the tensor M in (II.2).

Lemma 2. Let P, Q be the covariance of y and u. Then
the tensor T tends asymptotically to:

Tsvi = Ms
qjP

qvQij . (II.6)

In the expression (II.6), we can observe a general pattern.
Every quantity that the agent learns ultimately depends on
three factors:

1) The agent’s sensorimotor cascade. In this case, M.
2) The environment statistics. In this case, the covari-

ance P represents the effect of the specific environment
in which learning takes place. For example, in the case
of a camera, the covariance P depends on the statistics
of the environment texture, and it would change in
different environments.

3) The experience the agent had in such environment. In
this case, Q captures the kind of “training” the agent
had in the environment.

In the control phase, the agent uses the learned tensors T
and P to generate the commands. The following proposition
is the main result of this section.

Proposition 3. Assume that the agent is equipped with a BDS
(Definition 1), that it has learned P and T using equations
(II.4)–(II.5), and Q is positive definite. Then the control law

ui = −(yv − yv�)
∗TsviP−1

vq y
q (II.7)

corresponds to a descent direction of the error metric
‖y− y�‖. Moreover, if the operators {Ms

viy
v}ki=1 commute,

y� is asymptotically stable.

Remark 4. It is a classic result [13] that, if a system
such as (II.2) is nonholonomic, there exists no smooth con-
troller that stabilizes y� asymptotically. In particular (II.7) is
smooth in y, therefore it cannot work in the nonholonomic
case. Instead, the requirement that the operators {Ms

viy
v}ki=1

commute is a technical necessity for having a compact proof
and can probably be relaxed.

The bootstrapping strategy has a couple of interesting
properties: the tensors T and P can be learned using simple
Hebbian learning, and the resulting control strategy is a
bilinear form of the observations y and the error y − y�.
These two properties allow a very efficient engineering
implementation, and at the same time make the algorithm
implementable using neural networks (“bioplausible”). The
only operation that is not bioplausible is computing P−1.
This motivates looking for ways to get around such compu-
tation.

Whitening the observations. If the observations had co-
variance equal to the identity, we could omit the term P−1.
This suggests one way to proceed: find a transformation
z = Wy such that z has unit covariance. In the signal
processing community, the problem of finding a suitable
transformation W is well known and it is called whitening.
Numerous algorithms exist for whitening, most of them
having a neural implementation [14].

Omitting “P−1” from (II.7). One could also ask whether
it is possible to simply omit P−1 even when it is different
from the identity. We can prove the following technical
condition on P and M that makes it possible to omit the P−1

from (II.7) and still obtain a suitable minimization strategy.

Proposition 5. Assume that P and M commute, in the sense
that, defining Pq

v = Pqrmrv , it holds that M·
qjP

q
· = P·

sM
s
·j .

Then the control strategy

ui = −(ys − ys�)
∗Tsvi (yv)

∗ (II.8)

minimizes the error metric V = 1
2e

∗
sP

s
ve

v , where es = ys −
ys�.

We shall discuss the meaning of the commutation con-
dition when we get to discussing the actual sensors. We
will see that in some cases the covariance P acts as a
smoothing operation, and that the tensor M is similar to

tensors learned for field sampler

tensors learned for camera

tensors learned for range-finder

A system with n observations and k commands
is represented by k tensors of size (n,n).

We use bilinear dynamics sensors (BDS) as a
general representation for sensorimotor cas-
cades.

Bootstrapping bilinear models
of robotic sensorimotor cascades

Necessary invariance properties
of bootstrapping agents

The uncertain semantics of observations and
commands is represented by group actions
acting on the signals (diffeomorphisms, per-
mutations, etc.) that change the representa-
tion but preserve the information.

An optimal agent must compensate those
nuisances, as they do not change observabil-
ity and controllability of the system.

To appear in
ICDL 2011.

Appeared
in ICRA 2011.

To appear
in IROS 2011.

4

If the agent interacts with a system in BDS(n, k), the following
action corresponds to a servoing action to a given goal obser-
vation y� (y → y� locally, if the kinematics is holonomic)6:

act :

{
ũi = −(yr − y�r)∗P−1

rv T
sviP−1

vq y
q,

u = saturate(ũ,Ωu).
(3)

Invariance properties of BDS agents: Note that it is not
clear at all from the definition of an agent what are its
assumptions about the world. Here we prove that the agent
behavior is invariant to arbitrary linear transformation of input
and output, as represented by the action of the GL group. This
implies that there are no assumptions on the ordering of the
signals, the gain of the commands, and measurements units
for the observations. The first part of the proof consists in
showing that the nuisances do not change the class of models;
the second part shows the invariance of the agent behavior.

Proposition 8. The BDS(n, k) family is closed with respect
to the action of GL(n) on the observations and GL(k) on the
commands: GL(n) · BDS(n, k) · GL(k) ⊂ BDS(n, k).

Proof: This is a simple verification that, if we let y′ =
Ay and u = Bu′, (with A ∈ GL(n), B ∈ GL(k) invertible
matrices), the relation between ẏ′, y′ and u′ is bilinear.

Proposition 9. The agent ABDS(k, n) is invariant to the action
of (GL(n),GL(k)) on BDS(n, k).

Proof: (sketch) The agent is minimizing the error function
J(y) = (y−y�)∗P−1(y−y�), which is invariant to GL(n). In
fact, we have that A ∈ GL(n) maps y �→ Ay and P �→ APA∗

and J does not change.
Note that the agent presented in [15] minimizes J̃(y) =

‖y − y�‖2, which seemed to be the most intuitive choice to
us, but it is in fact not invariant to GL(n).

IV. BILINEAR GRADIENT DYNAMICS SENSORS

The class of bilinear gradient dynamics sensor (BGDS)
models is a subset of BDS where the dynamics ẏ are assumed
to depend on y itself only through the spatial gradient ∇y.

Definition 10. A system is a bilinear gradient dynamics
sensor (BGDS), if its output is a function7 y(·, t) ∈ C(S;R)
defined on a Riemannian manifold S (the sensel space), and
the dynamics of the observations is bilinear in the gradient of
the observations and affine in the commands. Formally, there
exist two tensor fields G and B on S such that

ẏ(s, t) = (Gd
i (s)∇dy(s, t) + Bi(s))u

i(t). (4)

We denote by BGDS(S, k) ⊂ D(C(S;R),Rk) the family of
all such systems with k commands and sensel space S .

In equation (4), the symbol s represents a spatial index, the
position of the sensel on the space S , and ∇dy(s) denotes the
d-th component of the gradient with respect to s. The tensor
field G represents the bilinear part of the dynamics, while B
represents the purely affine part that does not depend on y.

6In 3, “saturate(ũ,Ωu)” denotes the projection of ũ on the boundary
of Ωu.

7C(S;R) denotes the set of smooth functions from S to R.

We now give the equivalent invariance properties of Propo-
sition 8. For BDS models, we considered the effect of the linear
group GL(n) on the observation; for BGDS, we consider the
effect of diffeomorphisms of the manifold S .

Proposition 11. The BGDS(S, k) family is closed with respect
to diffeomorphisms ϕ ∈ Diff(S) that act on the observations
as z(x, t) = y(ϕ(x), t), and the action of GL on the com-
mands: Diff(S) · BGDS(S, k) · GL(k) ⊂ BGDS(S, k).

A. Intrinsic calibration for BGDS

An agent that wants to exploit the BGDS structure needs
more information about the sensor than just the collections
of measurements. In fact, in equation (4), the knowledge of
the metric structure of the manifold S is implicit in using the
gradient operator. Knowledge of the metric structure of S is
equivalent to the intrinsic calibration of the sensor. In this
context, the problem of intrinsic calibration is much harder
than the problem as defined in the computer vision literature,
where most techniques assume that the sensor geometry is
known up to a few parameters to estimate and that the sensor
dynamics is known (it is a camera). However, there is a
literature of works that tackle exactly this problem [10], [19]–
[21] and we can incorporate their findings in our analysis.

We model the scenario as in Fig. 2a. There is a signal y
which is a function defined on the sensel space S . This
function is sampled (discretized) at n unknown points {si}ni=1

to give the discretized observation yi = y(si), which are
accessible to us. We make the assumption that the sampling
is dense enough with respect to the bandwidth of the signal
that no information is lost, and one could reconstruct the
signal from the samples. However, we do not assume that the
sampling points are known, and their choice is considered a
nuisance, represented by a diffeomorphism applied to a base
set {ŝi}ni=1. After sampling, we insert a permutation nuisance
to make it clear that the agent has no information about the
ordering of the sensels.

The results in the literature can be summarized as follows.
In general, it is not possible to reconstruct the positions si ∈ S
of each sensel in a metrically correct way. However, it is
possible to recover the correct sensel topology. One possible
way to perform this is to compute the correlations ρij =
corr(yi(t), yj(t)), derive logical distances dij = arccos(ρij)
and then solve an embedding problem: find vectors xi in some
manifolds such that d(xi, xj) � dij . The solution conserves
the topology (the neighbor-neighbor relations), because if two
sensels are close, their correlation is necessarily close to 1,
and the embedding algorithm will place them close to each
other. However, the information will not be recovered. This
state of information can be described by a diffeomorphisms
nuisance, because the action of a diffeomorphism conserves
the topology, but destroys any metric information.

To summarize, the effect of sampling, permutation, calibra-
tion, and reconstruction (Fig. 2a) is equivalent to an embedding
to a known space (for example Rd, with d ≥ dim(S)) plus
the action of a diffeomorphism nuisance (Fig. 2b), that, by
Proposition 11, does not change the BGDS nature of the
system. Thus, in designing an agent, we can assume that
the sensels position in S is known, up to a diffeomorphism
nuisance that must be taken into account.

We assume that observations are functions on a manifold
(e.g. visual sphere), and the dynamics, bilinear in the
gradient and commands, is parametrized by two tensors
G and B:

This model allows learning with a computational costs
linear in the number of sensels.

Example for camera data

Task: detect extraneous objects based on learned model.

Input predicted
derivative

observed
derivative

mismatch
(detection)

camera frame a slice of the tensor G

Towards more efficient models
(bilinear gradient dynamics)

• Can an agent learn to use any sensorimotor
cascade (set of sensors and actuators) from scratch,
with no prior information about them?
We call this problem “bootstrapping”.

• The agent “wakes up” connected to streams of uninter-
preted observations and uninterpreted commands.

• The agent must obtain a model of its own body, and use the
model to perform a useful task.

Uninterpreted
observations

(sensor #1)

Uninterpreted
commands

Uninterpreted
 observations

(sensor #2)

Time

• Behaviorally-relevant state/features
often not directly observable.

This makes most techniques from machine
learning not applicable.
Creating stateful representations
is a major challenge of bootstrapping.

• Nature gives a proof of existence that a so-
lution exists which uses simple and
slow computation.

Getting the best results
possible with the

maximum effort
available.

Aiming for
satisfactory results

with the
minimum effort.

In robotics, like all engineering, there is a constant tension between:

The problem
We start from uninterpreted streams of observations and commands.
Which one is the camera and which one is the range-finder?

• Study intrinsic tasks that are
independent of the sensors and
actuators (e.g., “servoing”).

•Design methods that work for a
wide range of sensorimotor cas-
cades, parameter-free.

But isn’t bootstrapping also...?

Yes! It is a huge problem with many different as-
pects to it, and it is at the intersection of many
scientific communities.

We are focusing on a few aspects related to low-
level sensorimotor interaction, that we believe
ready for a rigorous formalization and solution.

