$\mathbf{C}_{\mathbf{2}}\mathbf{E}_{\mathbf{2}}$

I L L I N O I S

Verification Tool for Stateflow

Introduction

Duggirala • Mitra • Potok • Viswanathan

C2E2 a **verifier** for models of cyberphysical systems

- Nonlinear hybrid models. Supports Mathworks[™] Simulink Stateflow models and xml inputs
- Guards, resets, initial sets
- **Bounded time invariants**
- Counter-example generation
- Graphical user interface, visualizer
- Sound and relatively complete

Frontend

Parser

Simulator

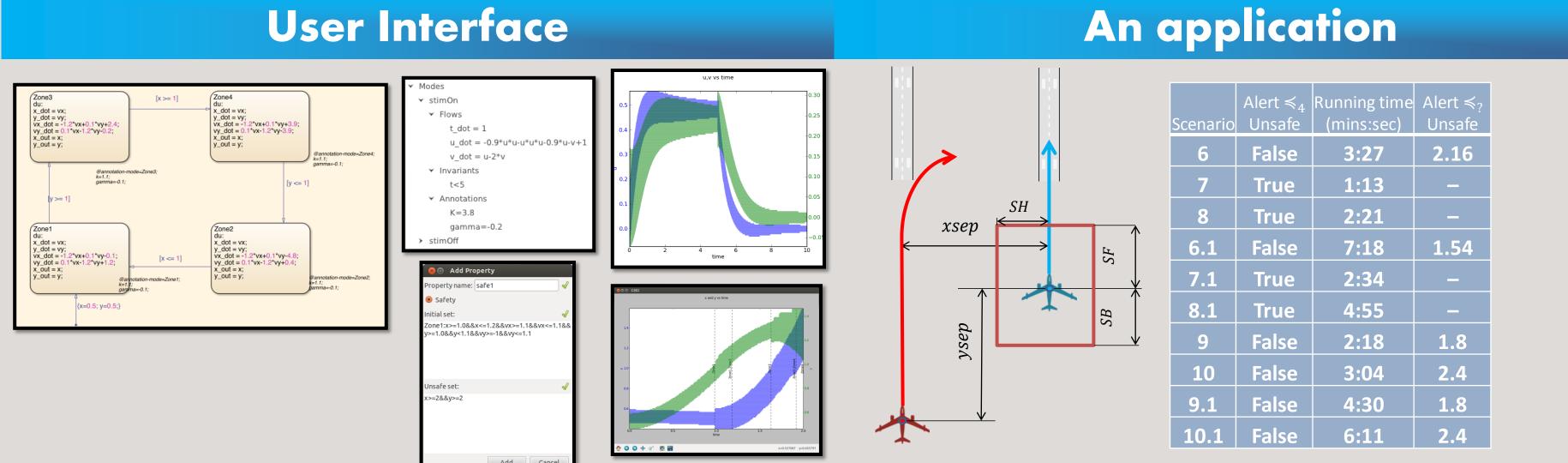
Generator

Plotter

Annotated

Stateflow

Mode


Property

Soundness and Relative Completeness

Theorem. If returns safe or unsafe, then A is safe /unsafe.

Definition Given HA $A = \langle V, Loc, A, D, T \rangle$, an ϵ -perturbation of A is a new HA A' that is identical except, $\Theta' = B_{\epsilon}(\Theta), \forall \ell \in$ Loc, $Inv' = B_{\epsilon}(Inv)$ (b) a \in A, $Guard_a = B_{\epsilon}(Guard_a)$. A is robustly safe iff $\exists \epsilon > 0$, such that A' is safe for U_{ϵ} upto time bound T, and transition bound N. Robustly unsafe iff $\exists \epsilon < 0$ such that A' is unsafe for U_{ϵ} .

Theorem. Terminates when robustly safe or robustly unsafe.

Backend

GLPK

Core C2E2

Engine

Annotations &

Property

Simulator

ŏ	Irue	Z:Z1	_
6.1	False	7:18	1.54
7.1	True	2:34	_
8.1	True	4:55	_
9	False	2:18	1.8
10	False	3:04	2.4
9.1	False	4:30	1.8
10.1	False	6:11	2.4

Architecture

Simulator

Code

CAPD

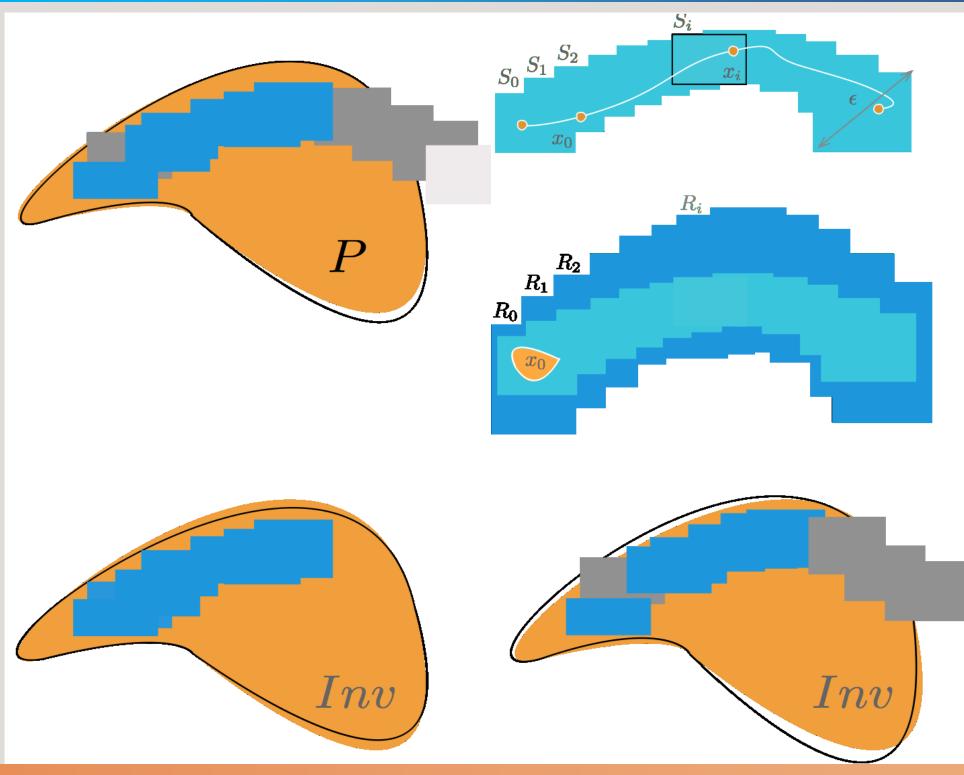
g++

Verification Result &

Reach Set

Onward

Automatic Computation of Annotations


Temporal precedence properties

Compositional analysis, unbounded time properties

What's on your wish list?

References

Technique

http://publish.illinois.edu/c2e2-tool/

C2E2 User's Guide. Duggirala, Mitra, Viswanathan, and Potok. 2014.

Verification of Annotated Models from Executions. Duggirala, Mitra & Viswanathan. EMSOFT 2013.

Temporal Precedence Checking for Switched Models and its Application to a Parallel Landing Protocol. Duggirala, Wang, Mitra, Munoz & Viswanathan, Formal Methods 2014.

Invariant Verification of Nonlinear Hybrid Automata Networks of Cardiac Cells. Huang, Fan, Mereacre, Mitra & Kwiatkowska. CAV 2014

Supported by the National Science Foundation

Contact: c2e2help@gmail.com