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Problem
Autonomous (self-driving) vehicles hold the promise of revolutionizing areas
such as transportation, logistics, manufacturing, remote sensing and defense.
However, the potential widespread use of autonomous vehicles has raised nu-
merous safety concerns involving the reliability of the control algorithms that
drive these vehicles. In particular, these algorithms control vehicle maneuvers,
wherein faulty control can potentially endanger human life and property. For
autonomous cars, response to unforeseen situations involving imminent colli-
sions and suboptimal driving conditions such as icy, wet or damaged roads
may involve “aggressive” maneuvers that exploit the complex nonlinear vehicle
dynamics. However, verifying such controllers is challenging.

Project Goals
Our work seeks to develop verified maneuver regulation algorithms to char-
acterize the types of maneuvers that can be controlled in a safe and stable man-
ner [5, 13].

Goal #1:
Construct guaranteed maneuver regulation control algorithms and
characterize the space of maneuvers that are controllable given
“driving conditions.”

Goal #2:
Transition from model level to augmenting the overall autonomous
vehicle design.

Goal #3:
Lift ideas from a single vehicle to multiple co-operating vehicles.

Evaluation Testbed:
Evaluate each step of our work using the Ninja Car platform.

Control Model
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Guaranteed safe and stable maneuver regulation is key to building reliable and
robust autonomous vehicles. Our approach treats the control-planning prob-
lem as a hierarchical structure in which trajectory optimization and maneuver
regulation are interwoven, with the possibility for interruption through failure
events which would then adjust the controller in response.

Our approach lifts from characterizing the space of maneuvers possible for a
single vehicle to a cooperative setting [11]. We are investigating how vehicles can
cooperatively share driving information to map road conditions in real time.
Furthermore, we are creating protocols for avoiding collisions cooperatively by
negotiating maneuver selection to avoid collisions in real-time. Here we focus
on determining what complexity of state space is needed to facilitate cooperation
for time-constrained incidents in challenging networking environments.

Dynamical Models and Parameter Identification

Our maneuver regulation algorithms are based on dynamical models of the ve-
hicle with (time-varying) model parameters that capture characteristics of the
vehicles and road conditions. Our work then investigates the construction of a
stack of models and characterization of the driving conditions in terms of rep-
resentative sets of model parameters. An existing experimental testbed, called
the Ninja Car, at the University of Colorado, Boulder will be used to construct
these models [6]. Our framework will simulate various driving conditions in the
laboratory and identify parameters for the proposed models.

Currently, the approach used to simulate the Ninja Car platform’s dynamics has
28 parameters and over 30 state variables, some of which evolve according to
constraints that may be used to decompose the model to 12 state variables. The
state variables refer to SE(3) pose and time derivatives, and the model parameters
describe physical quantities e.g. the wheel base, torque-speed curve slope, and
spring stiffness.
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Model ẋ(t) = f(x,u),
Maneuver: (x(s),y(s),z(s))

x(s)
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With the dynamical models are constructed, the next stage of our effort involves
characterizing the set of maneuvers for the given model and parameter set [5, 13].
The result is a succinctly represented set of trajectories that can be carried out
for given sets of initial states of the model and parameter values (much along
the lines of a flowpipe construction [1, 4]), wherein for each trajectory, we con-
struct associated Lyapunov and barrier functions. Sampling the trajectory space
densely yields a database of maneuvers that incorporate trajectory information
along with associated feedback law, Lyapunov and barrier functions.
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Recent work at the intersection of formal methods and control design has given
us promising directions for building control algorithms that incorporate formal
high level guarantees such as safety and stability [2, 7, 8, 10, 12]. Building
on these works, we will synthesize guaranteed control algorithms to regulate ma-
neuvers of autonomous vehicles by bridging the gap between the capabilities of
formal control design schemes and the practical details involved in translating
them to realistic driving scenarios. We will employ planning algorithms such us-
ing sample-based stochastic searches in order to search for possible trajectories
while also guaranteeing their behavior through these methods. To address mod-
eling uncertainties, on-board controllers under development by our team will
repeatedly estimate the model state and verify that the Lyapunov/barrier certifi-
cates are respected during runtime [9, 14].

Experimental Testbed

The Ninja Car is a 1
8 -scale model of a car that has been modified for autonomous operation

using on-board sensing and computation. It is capable of driving in various environments
through structural augmentations and has on-board computation abilities to support experi-
mental autonomy algorithms for driving. The API for the vehicle’s control and sensing al-
gorithms provide the inputs available for all levels of controller synthesis. Currently, the test
environment consists of only a carpeted surface, but other driving conditions such as icy, sticky
and granular surfaces will also be introduced to test the elasticity of our algorithms to changes
in the environment. Furthermore, different levels of abstraction for controller synthesis (e.g.
velocity control versus torque control) are implemented to allow for exploration over control
input spaces. This enable our rapid testing of control algorithms on experimental platforms in
order to guide ongoing development.

The Ninja Car platform is outfitted with advanced state feedback sensors, including a global-
shutter stereo rig, high-end MEMS IMU, swing arm encoders, high-precision optical wheel
encoders, augmented structural components, and a quad-core i7 miniature computer with a
discrete graphics card. The mast with attached pan-tilt unit as pictured is removable.

Multi-Vehicle Design

It is impractical to communicate the de-
tailed information on road conditions, pos-
sible maneuvers, and predicted trajectories
to other vehicles. Therefore we require a
coarse characterization of the admissible
maneuver and trajectory space as well as
the road condition. We are investigating the
levels of granularity for characterizating the
relevant information spaces to strike an op-
timal tradeoff between the communication
complexity and the utility of the receiving
information for prediction and coordination.
This effort requires codesign with guaran-
teed methods in radio transmission [3].

The tradeoff involved in cooperative driving in challenging situations is different
from that for the single vehicle case. For example, for a sharp turn on a loose
ground, a single vehicle may allow large lateral displacement for maximum
stability while we may have to bound the displacement in the multi-vehicle
situation. This requires ranking (and possibly pruning) maneuvers based on
certain computed bounds e.g., the expected maximum longitudinal and lateral
displacements, as indicated above. In this figure, the arc represents the maximum
possible maneuvering range with a probability estimate for a given region being
the likely maneuver to be attempted. Based on this probability, we may prune
the maneuver space, e.g., not consider those maneuvers that have a maximum
lateral displacement more than a certain value.

Outreach and Education
We are integrating our research into a series of education and outreach activi-
ties that will ensure the broader impacts of this project. The Ninja Car testbed
will be disseminated as a “do-it-yourself” project for interested students and
enthusiasts under $300. The testbed is already being used in project-oriented
classes offered to undergraduate students in engineering; these classes are of-
fered to select students, to motivate their choice of an engineering discipline, and
develop an unified understanding of engineering and design. The testbed is also
being used in focused graduate classes on building autonomous vehicles from the
ground up. Furthermore, we will support local teams of students participating in
competitions such as those organized by sparkfun.com.

Finally, we are incorporating our testbed into our ongoing online education ini-
tiatives. We are designing a series of project oriented courses that will leverage
an existing MOOC on linear and integer programming on the Coursera platform,
wherein the focus will be on using optimization techniques for control of au-
tonomous vehicles.
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