

Aim 1: Convert system requirements to component-level requirements using a probability density function approach. Task 1.A - Derive density-function methodology for decomposing system-level requirements.

Density-based fault trees are used to assess the reliability of actuator architectures for unmanned aircraft. Task 1.B - Investigate techniques for computing bounds on the probabilistic performance of a system.

Integral quadratic constraints provide a framework to design and analyze fault estimators for uncertain systems. [1] R. Venkataraman and P. Seiler, "Safe Flight Using One Aerodynamic Control Surface," AIAA SciTech, 2016, Paper No. AIAA-2016-0634 [2] R. Venkataraman and P. Seiler, "Robust LPV estimator synthesis using integral quadratic constraints," 2016

American Control Conference (ACC), Boston, MA, 2016, pp. 4611-4616

CPS: Synergy: Collaborative Research: Managing Uncertainty in the Design of Safety-Critical Aviation Systems

NSF/CNS-1329390 Peter Seiler and Demoz Gebre-Egziabher University of Minnesota

Overview

Issue: Aviation systems require hardware (physical) and software (cyber) components designed by many engineering teams to be safely integrated.

Objective: Create tools to manage uncertainty in the design and certification process of safety-critical aviation systems, e.g. NextGen.

Development Costs for Conventional and Proposed Design Methods

NSF/CNS-1329341 Jason Rife and Sam Guyer Tufts University

Typical Profile for a Precision Landing

Impacts:

Significant reduction in the costs and time required for fielding new aviation systems.

Applications to other complex systems including smart power grids and automated highways.

centric projects.

Robotic Snowplow Competition Student competition to design, build and operate an autonomous snow plow. Competition rules are now being modified to incorporate a CPS-challenge starting with the 2015 competition cycle.

CPS Curriculum Development

Use sim. and hardware experiments in intro. control course to explore hybrid controls (as example CPS application).

Aim 3: Apply techniques from Extreme Value Theory (EVT) to develop adaptive verification and validation procedures that shorten the time required for certification of complex cyber-physical systems.

Outreach and Education: Engage engineering students in hands-on, CPS-

